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Abstract

This paper studies the dynamics of farm size distribution, how they are influenced
by weather shocks, and the implications for aggregate productivity. Using data from
several developing countries, we first document new empirical facts about households’
landholding choices and how weather shocks influence these decisions. Building on a
rich longitudinal dataset for Colombia on farm sizes, land transactions, and households’
consumption and investment decisions, we then show that weather shocks increase the
frequency of land sales and reduce farm sizes within municipalities, especially among
smaller farms. To rationalize these facts, we develop a dynamic, heterogeneous house-
hold model in which uninsured farmers make landholding and occupational choices.
Our calibrated model shows that uninsured risk substantially curbs aggregate agricul-
tural productivity, and that the effects of temporary weather shocks on farm size and
agricultural output are highly persistent, taking more than a decade to fade out.
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1 Introduction

In low- and middle-income countries, a large share of households live in small, low-

productivity farms (Restuccia et al., 2008; Gollin et al., 2014; Herrendorf et al., 2014).

Moreover, the lack of insurance mechanisms in these countries leaves rural households

largely exposed to the weather shocks inherent to agricultural production, strongly influ-

encing their consumption and investment decisions. Prior research has shown that the

farm size distribution in these countries—which is characterized by a large fraction of small

farms—significantly constrains aggregate productivity (Adamopoulos and Restuccia, 2014;

Foster and Rosenzweig, 2022). We lack, however, better understanding of how the dynamics

of households consumption and investment decisions contribute to the predominance of small

farms, and the influence of weather shocks on these decisions.

In this paper, we study the dynamics of farm size distribution, how they are influenced

by weather shocks, and the implications for aggregate agricultural productivity. We first

document new empirical facts about households landholding decisions and their response

to weather shocks across developing countries, by bringing together household-level data

from Colombia and eight West African countries. In addition, building on two unique ad-

ministrative panel datasets from Colombia—one containing hundreds of thousands of land

transactions across the country, and another with the universe of land-holding registra-

tions—we estimate how land-market transactions and the farm size distribution are influ-

enced by weather shocks at the municipality level. To rationalize the empirical facts we

uncover, we develop and calibrate a dynamic, heterogeneous household model, which we use

to study quantitatively the dynamic effects of weather shocks and implications for aggregate

productivity.

Our paper begins by documenting two empirical facts on the relationships between farm

size, farm size growth, and exit rates that resemble empirical relationships found in the

firm size distribution literature based on the manufacturing sector—e.g., Jaimovich et al.

(2023) and Clementi and Palazzo (2016). First, there is more churning among households

with smaller farms: i.e., small farms are more likely to exit farming, but surviving small

farms have higher farm size growth when compared to surviving large ones. Second, when

farmers experience a weather shock, there is an increase in the exit probability across farms

of all sizes. Among surviving farms, smaller farms tend to shrink when they experience the

weather shock, while large farms tend to grow.

To better understand the implications of these household-level decisions on the farm size

distribution, we turn to our data from Colombia, which give us the opportunity of observing

the universe of farms as well as detailed information on the history of land transactions.
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Using these data, we first show that weather shocks substantially increase the number land

transactions in a municipality: specifically, they increase the number of plot sales (full or

partial) and the number or mortgage contracts. Results also indicate that this increase in

plot sales is largely driven by purchases made by landless households. Second, we find that

weather shocks increase the total number of farmers in a municipality, and that this re-

sult comes mostly from an increase in the total number of smaller farms—in other words,

weather shocks lead to land fragmentation. Third, we lastly show that, when experiencing

a weather shock, households reduce their consumption, increase their probability of migrat-

ing to another municipality, and reduce their ownership of durable assets other than land.

Importantly, throughout our analysis, we provide a host of robustness tests, in which we

experiment with alternative sets of controls, measures of weather shocks, definitions of farm

size, and controls capturing alternative mechanisms.

Motivated by these empirical facts, we develop a dynamic, heterogeneous household

model. In our framework, households are either farmers or workers and, in each period,

they make decisions about their occupation in the subsequent period. If they choose to farm

they must decide how much land to acquire for production in advance of the harvest season.

Households are heterogeneous in terms of their landholdings, and in terms of their farming

and non-farm working productivity. These productivities are subject to shocks, which gen-

erates uncertainty. Based on the reality of rural markets in developing countries, households

lack access to both agricultural insurance and land rental markets. In this context, land-

holdings play a dual role: they serve as a form of wealth accumulation and also as a tool

for consumption smoothing. The landholding decisions, together with the entry and exit

decisions, jointly determine the farm size distribution in every period.

In the model’s steady state, a larger proportion of small farms exit farming compared

to large farms, as the outside option of becoming a worker is relatively more attractive

to smaller farms. To investigate household behavior in response to weather shocks, we

analyze the transition dynamics. Specifically, we simulate an unexpected negative aggregate

productivity shock affecting only farmers. If the shock is sufficiently temporary—i.e., if the

shocks has low persistence—, then the number of farmers in the economy rises, leading to a

reduction in average farm size, replicating what we find in our empirical facts. This occurs

because the negative shock induces some farmers, particularly small ones, to exit, as they

place a higher value on smooth consumption. This leads to a reduction in the price of land.

However, when the shock is temporary, the value of becoming a farmer remains unaffected

for landless households, since future productivity remains fixed. Quantitatively, the entry

of landless households can exceed the exit of small farmers. In contrast, when we simulate

shocks with greater persistence, fewer landless households choose to enter farming, which

3



tends to reduce the number of farmers in the economy, therefore increasing the average farm

size.

To quantify the aggregate implications of the farm size dynamics to agricultural produc-

tivity, we calibrate the steady state of our model to match several statistics about the farm

size distribution in Colombia. Our model matches the average and the variance of farm

size, the share of households in agriculture, and the average farm size of new entrants. Our

quantitative model indicates the existence of substantial misallocation in steady state, in

which less productive farms have low marginal product of land—i.e., they own more land

than optimal. Relative to the optimal allocation of land across farmers with heterogeneous

farming productivity, total agricultural production is 36 percent lower.

We close our paper by studying the transition dynamics generated by weather shocks.

These shocks generate significant impacts on farm size dynamics, consistent with our find-

ings from Colombia. A 25% reduction in aggregate agricultural productivity results in a

20% drop in land prices, a 25% decline in agricultural output, and an influx of new, less

productive landowners. The shock induces land fragmentation, reducing the average farm

size by 1.2% and causing a 0.7% decrease in the average skill of farmers. Notably, the effects

are highly persistent: while aggregate agricultural productivity recovers within five years,

approximately 30 percent of the reductions in average farm size and farmer skill remain 20

years after the shock. These dynamics underscore the dual role of land as both a productive

asset and a consumption-smoothing mechanism, as well as the far-reaching implications of

weather shocks for the farm size distribution and agricultural productivity.

Related Literature. This paper contributes to a growing literature on the causes and con-

sequences of the farm size distribution in developing countries. Previous studies have ex-

plored various driving factors, including the role of land institutions (Bolhuis et al., 2021;

Adamopoulos and Restuccia, 2020, 2014; Adamopoulos et al., 2022; Chen et al., 2022), land-

and labor-market imperfections (Foster and Rosenzweig, 2022; Acampora et al., 2022), and

access to urban centers (Gáfaro and Pellegrina, 2022; Pellegrina, 2022; Rao et al., 2022;

Madhok et al., 2022). Our contribution here is twofold. First, we document new facts about

the dynamics of the farm size distribution—drawing a parallel to the literature on firm size

distribution based on manufacturing—and about the response of the farm size distribution to

weather shocks.1 Second, we bring in a dynamic perspective to this literature, by analyzing

how households consumption and investment decisions shape the farm size distribution in

the absence of insurance and land markets.

1Some previous studies have documented the occurrence of distress land sales with survey data in sev-
eral developing countries (Cain, 1981; Deininger and Jin, 2008; Musyoka et al., 2021). To the best of our
knowledge, we are the first to show the impact on the farm size distribution.
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Importantly, our results emphasize that low agricultural productivity can be exacerbated

by the aggregate consequences of individual responses to uninsured risk. By documenting

how the aggregate exposure to adverse weather shocks leads to a more fragmented farm

size distribution, our findings point to another mechanism explaining the notoriously low

productivity of agriculture relative to the non-agricultural sector in developing economies

(Gollin et al., 2014; Restuccia et al., 2008; Caselli, 2005). Notably, our results indicate that

short-term shocks can have especially persistent effects on the economy.

By developing a heterogeneous household model for the agricultural sector, our paper

speaks to the rich literature on heterogeneous firm models that builds on the seminal work

of Hopenhayn (1992) and Aiyagari (1994). In particular, our work complements recent

papers applying this class of models to agriculture. Brooks and Donovan (2020) study the

implications of risk reduction induced by the construction of bridges. Manysheva (2022) and

Gottlieb and Grobovšek (2019) focus on the role of communal land systems on aggregate

agricultural productivity. Peralta-Alva et al. (2023) quantify the costs of tax revenues in

low-income countries with large agricultural sectors. Mazur and Tetenyi (2024) investigate

the macro-economic implications of agricultural input subsidies. Our key contribution here

is to treat the farm size distribution as endogenous, determined by households consumption

and investment decisions. Our approach to landholding choices is similar to papers modelling

firm investments under adjustment costs—e.g., Khan and Thomas (2008). Moreover, with

exception of Brooks and Donovan (2020), these recent applications focus on the stationary

equilibrium, whereas here the transition dynamics is a core object of our analysis. Our

work benefits from recent methodological advances, specifically the Sequence Space Jacobian

method developed in Auclert et al. (2021), to solve for the transition dynamics.

Lastly, this paper contributes to the literature exploring the effects of weather shocks

on agriculture. Negative productivity shocks often force poor landowners to deplete their

assets to smooth consumption (Rosenzweig and Wolpin, 1993; Carter and Zimmerman, 2003;

Kazianga and Udry, 2006). Farmers’ responses to weather shocks can also include adjust-

ments in labor and intermediate inputs use, loan repayment, changes in crop choice, migra-

tion, or investment in human capital (Jayachandran, 2006; Jessoe et al., 2018; Colmer, 2021;

de Roux, 2021; Jagnani et al., 2021; Aragón et al., 2021).2 We complement this literature

by documenting that land sales constitute an important margin of adjustment for farmers

facing negative productivity shocks. Because land is the main financial asset of most farmers

in developing economies, land sales can have strong, long-lasting effects on farmers’ future

income. As climate change intensifies, our results highlight an additional mechanism through

2In line with our findings, recent work by Kaboski et al. (2022) find that farmers invest in land when they
win a large lottery.
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which increases in the severity and frequency of adverse weather shocks can deepen the wedge

in the performance of agricultural sectors between poor and rich economies (Burke et al.,

2015; IPCC, 2021).

2 Farm Size Dynamics and Weather Shocks across Countries

This section provides a first look at farm size dynamics and the impact of weather shocks

across developing countries. To do so, we bring in household-level panel data for eight west

African countries from the EHCVM surveys, plus the Colombian rural household panel data

from ELCA, provided by Universidad de Los Andes.3 For every country, we construct a

region- and year-specific measure of weather shock. Given our focus on Colombia later in

the paper, we present all the empirical patterns for west African countries and Colombia

separately. After presenting such patterns, we discuss key characteristics of land markets in

developing countries, which serve as the foundation of the model developed in Section 5.

2.1 Farm Size Dynamics and the Impact of Weather Shocks

Farm Size Dynamics We document two patterns related to farm size dynamics that parallel

the empirical regularities observed in firm size dynamics—see for example Jaimovich et al.

(2023) and Clementi and Palazzo (2016). Figure 1, Panel (a), shows that smaller farmers are

more likely to exit farming.4 The magnitudes are relevant: In Colombia, farmers operating

below the average farm size are on average 75 percent more likely to exit (a share of 0.07

against a share of 0.04). In west African countries, farmers below the average farm size in

their respective countries are 100 percent more likely to exit (a share of 0.16 against a share

of 0.08). Panel (b) shows that smaller farms tend to grow, whereas larger farms tend to

shrink.5 In Colombia, farms below the average farm size grow, on average, 12 times, whereas

3ELCA stands for Encuesta Longitudinal Colombiana de la Universidad de los Andes, a longitudinal
household survey with three rounds of data (2010, 2013, and 2016). EHCVM stands for Enquête Harmonisée
sur le Conditions de Vie des Ménages, a nationally-representative household survey with two rounds of data
(2017-2018 and 2021-2022) for Benin, Burkina Faso, Côte D’Ivoire, Guinea Bissau, Mali, Niger, Senegal, and
Togo. We additionally use data for Nigeria from the LSMS General Household Survey-Panel.

4We define farm exit as a household owning no land. In the Colombian data, owning no land is strongly
correlated with the probability of moving. Between 2010 and 2013, among farmers who sold all of their land
by 2013, 18 percent moved to the urban area of the municipality compared to virtually 0 percent of farmers
who did not sell their land. Similarly, among farmers who sold all of their land by 2013, 30 percent of them
moved out of their region (to an urban area or another municipality), compared to 1 percent among farmers
who did not sell their land.

5A small proportion of surviving farmers experience no change in their landholdings between surveys,
given by a period of 3 years: about 6 percent of farmers show exactly no change in their landholdings, and
about 11 percent show a change that is smaller than 10 percent.

6



Figure 1: Farm Size Dynamics across Countries
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Notes : This figure shows results from local polynomial regressions with bandwidth of 1. The data from west African countries
are for 2018 and 2021 and the data for Colombia for 2010 and 2013. Exit probability equals 1 if the farmer holds no land in
the second period. The farm size growth is the log of the ratio of farm size between the first and the second period. The x-axis
is the log of the farm size divided by the average farm size in the respective country in the first period. Sample includes only
farmers who own land in the first period.

farmers above the average grow by 5 percent. In west Africa, those below the average farm

size grow around 13 times, whereas those above the average farm size shrink by 30 percent.

We notice that the large growth among small farms comes, in part, from the extremely low

basis: In west African countries, the average farm size is 3.45 hectares, whereas in Colombia

the average farm size in our sample is 2.55.6

Weather Shocks. We estimate the impact of weather shocks on farm size dynamics using:

yf,i,t = δt + µf + βTempShocksi,t + γ (TempShocksi,t × LFf ) + εf,i,t, (1)

where f indexes the farmer, i indexes the administrative region of farmer, and t is the year.

yft is either (1) an indicator variable for whether a household exits farming and (2) the log

of farm size. δt and µf are period and farmer fixed effects. TempShocksi,t is a measure

of weather shock, which consists in the sum of atypical-temperature days (measured in

hundreds) during the past two years—see details in Section 3—, LFf is an indicator variable

for whether the farm is above the average farm in its respective country, and εft is the error

term.

Figure 2 plots our estimates of equation (1). Panel (a) shows that weather shocks leads

to a large increase the exit probability for all types of farmers, but with this impact being

6As discussed in Section 3, the farm-level data from Colombia, ELCA, focuses on smaller farms. In the
agricultural census, the average farm size is 5.8 hectares.
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Figure 2: Effects of Weather Shocks on Farmers’ Exit and Farm Size Growth
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Notes: This figure shows the impact of weather shocks on farmers’ exit, defined as having no landholdings, and farmers’ log
of land area. We plot the point estimates of β and β + γ from equation (1) and their respective 90% confidence interval.
Standard errors clustered at the geographic administrative level in which the weather shock is measured. Sample size is 7,336
for Colombia and 50,742 for west Africa.

smaller for larger farms. Panel (b) shows the impact of weather shocks on the change in the

log of farm size, which conditions on surviving farms. Small farms shrink after the weather

shock, but large farms grow. The magnitudes of these effects are economically significant:

an increase of one standard deviation in the number of days with atypical temperature over

a two-year period increases the exit probability of smaller farmers in Colombia and west

Africa by 3.9% and 3.8%, respectively.7 Conditioning on surviving farms, an increase of one

standard deviation in the weather shock measure reduces small-farm size in Colombia by

6%, but increases large-farm size by 9.2%. For the west Africa sample, an analogous increase

in the severity of the weather shock reduces small-farm size 4.4% and increases large-farm

size by 16.8%. The fact that large farms in average exit the market with the shock, whereas

surviving large farms expand their operation, indicates the existence of general equilibrium

effects where land relocates between households.

A final aspect we consider here is the role of new farmers. The EHCVM and LSMS

household surveys provide insights into their significance: In 2021, 9 percent of all households

with positive landholdings were landless in 2018. In Appendix Figure O.1, using data from

west Africa, we find that weather shocks induce small farmers to exit, but they increase

the probability that landless households become farmers. By design, ELCA focuses on

households who owned land in the initial period, which makes this value, by construction,

7A one standard deviation increase corresponds to 20 additional days in Colombia, and 39 additional days
in the west Africa sample. Estimation results for equation (1) in table form are shown in Table O.1 in the
appendix.

8



close to zero.

2.2 Land Markets across Developing Countries

Three additional facts guide the interpretation of our reduced form findings and the design

of our model. First, land rental markets in developing countries are in general thin, and farm

operation usually coincides with land ownership. According to statistics from the National

Agricultural Survey Encuesta Nacional Agropecuaria DANE (2019), about 85% of plots in

Colombia were operated by owners in 2019, and 9% of farmers operated rented land. These

figures are consistent with those reported by Acampora et al. (2022), who show that the

proportion of agricultural households who rent out land across 6 African countries ranges

between 0% and 5%, and stands in contrast to figures showing that the share of farmland

operated under a rental agreement in the U.S. and the European union is about 40% and

46%, respectively.8

Second, the adoption of agricultural insurance is extremely low in developing countries.

Unsubsidized agricultural insurance coverage rates in high-income countries average 41.7%,

compared to 8% and 0.5% in lower-middle-income and low-income countries, respectively

(Mahul and Stutley, 2008). In Colombia, according to (DANE, 2019), the share of farmers

with any form of agricultural insurance is below 1 percent.

Third, Responses in the ELCA survey also suggest land distress-sales are not uncommon,

and that farmers sell their land when experiencing financial distress to smooth consumption:

between 2013 and 2016, nearly 65% of households who reported selling land did so in order

to pay for household expenses or cover outstanding debts, pay for a medical treatment, or

pay for education fees. The use of land sales as a consumption smoothing device is also

documented by Krishna (2010) in Africa.

These empirical regularities motivate the structure of our model. To capture the rela-

tionship between farm growth and farm size shown in Figure 1, we introduce idiosyncratic

productivity shocks that induce farmers to expand or shrink their farm size. Additionally,

farmers make occupational choices, in which they can sell their entire property to become

workers. Crucially, these land and occupational choices are made in an economic environment

with uninsured risk and no land rental markets. Building on the effects found in Figure 2,

we simulate the effects of temporary aggregate productivity shocks, which affects all farmers

in a region, to assess the relocations of land between agents and the aggregate implications

to agricultural productivity.

Next, we turn our attention to Colombia, where we construct a more comprehensive

8U.S. Census of Agriculture (2022), and Eurostat (2020) figures.
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longitudinal dataset on land transactions and farm size distribution. This dataset enables us

to uncover a host of complementary facts that highlights the mechanisms driving the effects

of weather shocks on the farm size distribution.

3 Data from Colombia

Our Colombian dataset is structured at two levels of disaggregation: municipality and farm.

At the municipality level, it contains annual information on land transactions, farm size

holdings, and weather shocks for 864 municipalities.9 At the farm-level, it provides detailed

information on farmers’ consumption, occupational, and investment decisions. We provide a

brief description of our datasets below, relegating details to Appendix OA. After presenting

our data, we turn to the reduced-form effects of weather shocks in Section 4.

Land Transactions. We obtained administrative, property-level transaction information

from the National Superintendence of Notaries (SNR)10—the government agency responsible

for keeping records of all real estate market transactions. For each property-level transac-

tion, we observe who is the buyer, who is the seller, and whether the transaction was a

partial property sale, a full sale, or a mortgage.11 These data cover all the properties that

were once part of a bald́ıo—a piece of land originally administered by the national govern-

ment at some point allocated to a private individual. By 2014, these properties summed up

to 23 million hectares—more than half of the currently privately-held land in the country

(Sánchez and Villaveces, 2016; Arteaga et al., 2017). These data contain all transactions

dating back to early 1900s, but we focus on the period between 2000 and 2011, which is

when our other datasets are available. We construct a balanced yearly municipality-level

data with the number of full sales, the number of partial sales, and the number of mortgage

transactions. For complementary analyses, we split the number of sales into those involving

buyers who previously owned land and those involving first-time buyers.12

Farm Size Distribution. Our farm size distribution data comes from the National Geo-

graphical Institute of Colombia (IGAC),13 which has information on the universe of farm

9We exclude from our final sample of municipalities large metropolitan areas and municipalities with very
few (i.e. below the 99th percentile) properties registered in our farm size distribution data. Our final sample
encompasses 85.3% of the rural population in the country.

10Superintendencia de Notariado y Registro.
11We do not observe the price nor the size of the properties that were sold.
12We proxy ownership by measuring whether a buyer ever appears in the SNR at the receiving end of a

transaction, be it a sale, an inheritance or a government allocation.
13Instituto Geográfico Agustin Codazzi.
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properties in Colombia.14 We obtained access to municipality-level aggregate information

from all properties in IGAC’s cadastre that are i) privately owned, and ii) categorized as

having an agricultural economic purpose. This amounts to roughly 40 million hectares of

land, which is comparable to the area of Germany or California. The data consists in a

yearly panel of municipalities with the number of farms, the number of owners, and average

farm size for specific ranges of farm size. The data from the land registry is available for the

period 2000-2011.15

Household-Level Data. We collect household panel data from the rural sample of ELCA,

a survey conducted by the Universidad de Los Andes.16 Here, we have a sample of 4,800

rural households interviewed over three survey rounds (a baseline collected in 2010 and two

follow-ups in 2013 and 2016). The baseline sample includes 17 municipalities. We have

detailed information on land ownership, consumption, and assets ownership. Moreover, we

have information on migration of household members.

Weather Shocks. We construct our weather shock variables based on temperature informa-

tion from ERA5 data, which is provided by the Copernicus Climate Change Service (C3S)

of the European Centre for Medium-Range Weather Forecasts (ECMWF). This dataset con-

tains global temperature information at the 0.25× 0.25 degrees resolution (≈ 28km2) on an

hourly frequency since 1979. With this dataset, we first compute the historical quarterly

distribution of daily average temperatures by considering all temperature measurements for

municipality-day pairs within a calendar-quarter throughout the period 1979–2016. That

gives us four temperature distributions per municipality, one per quarter. We then compute

whether a municipality experienced an atypical temperature day if the temperature is below

the 20th, or above the 80th percentile of its corresponding quarterly temperature distribution.

Indexing days by d, quarters by q, years by t, and municipalities by i, and denoting the 20th

and 80th percentiles of quarterly temperature distributions as µ20
i,q(d), and µ80

i,q(d), we define an

atypical temperature day in a municipality by

AtipicalDayi,t,d = 1(Temperaturei,t,d ≥ µ80
i,q(d)) + 1(Temperaturei,t,d ≤ µ20

i,q(d)). (2)

14The data is designed to capture even informal properties that do not have all required formal documen-
tation.

15Formally, the land registry records information on rural properties used for agriculture, which we consider
analogous to farms. This is justified by the limited land rental markets, that create a strong link between
property and farm boundaries. Supporting this notion, land registry data shows that, on average, each owner
in a municipality reports only one property.

16Encuesta Longitudinal Colombiana.
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To define a single shock variable for each municipality i in year t, we face two challenges.

First, there is a potential lag between farmers’ reaction to atypical days and the registration

of land transactions or farm property in the data. In Colombia, it can take a few months—or

even years—for land transactions to be recorded in the system. Second, the impact of the

shock can influence farmers’ decisions and outcomes with a lag—for example, atypical days

experienced by a farmer in the end of a calendar year t−1 can have an effect on crop revenues

only in t when the harvest season arrives. To address this potential mismatch between the

impact of atypical days and economic outcomes, in our preferred specification we define the

shock as the sum of atypical days lagged over the past two years:

TempShocksi,t =
t−1∑
s=t−2

365∑
d=1

AtypicalDayi,s,d. (3)

In addition to our preferred definition of a weather shock, because we compute for each

municipality i the number of atypical temperature days accumulated within year t, we can

experiment with alternative specifications in which we include the independent impact of

atypical days within year t, together with its lags—see Appendix OB.1. Moreover, Ap-

pendix OB further reports results from a host of alternative definitions of our temperature

shock, including three alternative definitions of what constitutes an atypical day, different

formulations of a single shock variable with accumulations over different lags of years, and

an entirely different source of data on weather shocks based on SPEI —which is preferred by

some papers in the literature. Reassuringly, our qualitative results remain largely unaffected

by these different approaches.

4 Reduced-Form Impact of Weather Shocks

We organize this section as follows. We first present our municipality-level regressions in Sec-

tion 4.1, which shows how land transactions and the farm size distribution react to weather

shocks. We then present our household-level regressions in Section 4.2. Section 4.3 discusses

potential mechanisms. Throughout our exposition, for brevity, we focus on our preferred

specification. Section 4.4 discusses in detail all the alternative specifications that we employ.

4.1 Municipality-Level Regressions

We estimate the impact of temperature shocks on land transactions and farm size using:

si,t = βTempShocksi,t +X ′i,tδ + ηi + κt + εi,t. (4)
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Here, si,t represents the number of land transactions (sales or mortgages), the log number of

farm owners, or the log average and median farm size in municipality-year pair i, t. Xi,t is a

vector that includes time-varying municipality characteristics. Specifically, rainfall at t and

previous lags, the cumulative number of land allocations in the municipality up to t, which

controls for the land on which we observe transactions, a dummy variable for cadastral

updates, and the total municipal land area recorded in the registry, which accounts for

changes in registry coverage. The model also includes municipality fixed effects ηi to control

for time-invariant heterogeneity across municipalities, and year fixed effects κt to control for

time-specific shocks to land markets and farm size common to all municipalities. Robust

standard errors in all regressions are clustered at the municipality level.

Equation (4), as well as all subsequent specifications, rely on the identifying assump-

tion that, conditional on the fixed effects and the set of control variables, there are no

municipality-specific, time-varying unobservables correlated with the occurrence of atypi-

cal temperature shocks. This is a standard assumption in the literature (see, e.g., Dell

et al. (2014)). Section OB.2 shows that our results are robust to specifications that include

state-specific time trends, additional control variables, and alternative measures of atypical

temperature.

Table 1: Temperature Shocks and Land Transactions

Total Full Partial Mortages
(1) (2) (3) (4)

TempShocks 2.537*** 2.013*** 0.523** 1.046***
(0.536) (0.504) (0.229) (0.237)

Observations 10,021 10,021 10,021 10,021
R2 0.905 0.902 0.636 0.757
Mean Dep. Var 12.62 10.83 1.79 2.62

Notes: Data from the National Superintendency of Notaries (SNR) records. Coefficient estimates from equation (4). The
dependent variable in column 1 is total number of land sales (full + partial), in column 2 the total number of full sales, in
column 3 the number of partial sales, and in column 4 the number of land mortgages. The main independent variable is the
total number of atypical temperature days in the past two years (t−1, t−2) divided by 100. All regressions include municipality
and year fixed effects as well as cumulative rainfall and its 5 lags, number of land allocations, area covered by the land registry,
and an indicator of registry updates. See texts for more details. See texts for more details. Robust standard errors clustered at
the municipality level reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.

Effects on Land Transactions. Table 1 presents the OLS estimates from equation (4) on

four measures of land transactions. Column 1 shows results for the total number of land

sales. Columns 2 and 3 separate this into ‘full’ sales (entire property transfers) and ‘partial’

sales (fractional property transfers). Column 4 presents the number of land mortgages.

Consistent with the results from Figure O.9, columns 1 and 4 show that increases in the

days with atypical temperature induce land sales and mortgages. In particular, an increase

of 100 (roughly 2 standard deviations) in the number of days with atypical temperature
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over the previous two years increases the number of land sales by 20%. Columns 2 and 3

show that this increase is driven by an increase of 19% in full sales and of 29% in partial

sales. Column 4 shows that additional 100 days of atypical temperature in the municipality

increase by 38% the number of mortgages taken out by farmers against their properties.

Effects on Farm Size and Number of Owners. Table 2 presents the results of estimating

equation (4) on the number of owners and our measures of farm size.17 More days of atypical

temperature in a municipality during the previous two years lead to an increase in the number

of landowners (column 1), and to lower average and median farm size (columns 2 and 3). The

coefficient estimates in this table suggest that an additional 100 days of atypical temperature

over a two-year period increases the number of landowners by 1.5% and reduces median farm

size by 2.1%.

Table 2: Temperature Shocks and Average Farm Size
Number of

Owners
Mean

Farm Size
Median

Farm Size
(1) (2) (3)

TempShocks 0.015*** -0.015*** -0.021*
(0.005) (0.005) (0.012)

Observations 10,021 10,021 10,021
R2 0.992 0.993 0.974
Mean Dep. Var 2,501.13 32.06 16.15

Notes: Data from the National Land Registry (Catastro Nacional), maintained by the National Geographical Institute (IGAC).
All dependent variables are in logarithms. The main independent variable is the total number of atypical temperature days
in the past two years (t − 1, t − 2) divided by 100. All regressions include municipality and year fixed effects as well as log
cumulative rainfall and its 5 lags, log number of land allocations, log area covered by the land registry, and an indicator of
registry updates. See texts for more details. Dependent variables are the log number of land owners in the municipality (column
1), log average farm size (column 2), log median farm size (column 3). Mean Dep. Var. is the mean of the untransformed
variable. Standard errors clustered at the municipality level reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.

Effects on Landless Buyers. The increase in the number of landowners per municipality

shown in Table 2 could come from landless households or from farmers in neighboring munic-

ipalities purchasing land. To better understand which of these two sources drives the effect,

we exploit the fact that our transaction data has information on both the buyer and the

seller participating in each observed land sale. We use this to build the list of individuals

who own any land within each departamento (the administrative unit above the municipal-

ity, for which we have 28 units) at the start of every year, and match it to the list of land

buyers in each municipality throughout the following two years. This allows us to determine

if buyers already owned land in any of the municipalities within the departamento or not.

17Farm size is defined based on the registered size of the plots. Since some farmers might own more than
one plot, the average farm size tends to be different from the ratio of land to the number of owners.
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Details on the construction of these lists the matching process between them, and alternative

approaches for data construction is discussed in Appendix OB.3.

We decompose the estimated impact of weather shocks on land sales shown in Table 1

into sales made to landless buyers and sales made to farmers who were already landowners

by the time of the sale. Table 3 shows that extreme temperature increases land sales to both

types of buyers, but that effects are larger among landless owners, who on average make up

74% of the weather-driven land sales.

Table 3: Effect of Temperature Shock on Land sales by Type of Buyer

(1) (2) (3)

Total Sales
Sales to

Landless Buyers
Sales to

Already Owners
TempShocki,t 2.537*** 1.866*** 0.671***

(0.536) (0.408) (0.192)

Observations 10,021 10,021 10,021
R2 0.905 0.889 0.838
Mean Dep. Var 12.62 9.37 3.25

Notes: Data from the National Superintendency of Notaries (SNR) records. Coefficient estimates from equation (4). The main
independent variable is the total number of atypical temperature days in the past two years (t−1, t−2) divided by 100. Controls
are accumulated allocations, area covered by the land registry, an indicator of registry updates, accumulated precipitation and
five lags. Robust standard errors clustered at the municipality level reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.

Effects across Initial Farm Size Groups. Table 2 does not provide information on the

initial size of the farms that are being fragmented. A reduction in the average farm size

in a municipality could arise from the division of large estates into medium-sized properties

without any change in the number of small farms, or it could result from the fragmentation

of small farms into even smaller parcels, without affecting the number of larger properties.

To investigate this issue, we estimate the changes in the number of owners within fixed farm-

size bins over time. First, we split the distribution of farm size in each municipality into

quantiles, ensuring that each quantile has the same number of owners in the initial year of

our sample.18 We then compute the number of owners within each of these fixed size bins

for each subsequent year.

Denote as {q1
i , ..., q

J
i } the areas defining each of the j quantiles of the farm size distribution

in municipality i in the initial year of our sample, and denote as AreaOwnedo,i,t the total

landholdings of owner o in municipality i and year t. We compute for each year the number

18We take the initial distribution as the year 2000, for which 97% of municipalities have registry infor-
mation. For the remaining municipalities, we use the first year in which they appear in the land registry
dataset.
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of owners with total landholdings within each of these fixed size bins as:

NumOwnersji,t ≡
∑
o∈i

1·[AreaOwnedo,i,t ∈ (qj−1
i , qji )], (5)

where j = 1, ..., J , and q0
i = 0 for all i. We use this variable to estimate independent

regressions (one per quantile j) of the form:

NumOwnersji,t = γjTempShocksi,t +X ′i,yξ
j + µji + κji + ωji,t, (6)

where all the right-hand-side variables are the same as in (4)

Figure 3 reports our estimates. Extreme temperature shocks cause a sizable increase

in the number of owners with farms on the lower 5 deciles of the initial distribution, but

close to zero and not statistically significant effects on the number of owners in the 5 top

deciles.19 The number of large landowners remains stable while the number of small owners,

suggesting that the decline in average farm size is driven by new owners acquiring parcels of

land subdivided from small estates, instead of small farmers being solely bought by larger

farms.

Figure 3: Temperature Shocks and Number of Owners by Initial Distribution Quantiles

Notes: OLS estimates of the γ coefficients according to equation (6), for each of the 10 quantiles of the
initial municipality-level distribution of farm sizes. Each point estimate corresponds to a separate regression
where the main independent variable is the total number of atypical temperature days in the past two years
(t − 1, t − 2) divided by 100. The dependent variable is the log number of owners per quantile. Controls
are log accumulated allocations, log area covered by the land registry, an indicator of registry updates, log
accumulated precipitation and five lags. Regressions also include year and municipality fixed effects. Error
bars display 95% confidence intervals for standard errors clustered at the municipality level.

19Regression results in table form are in O.11 in the appendix. Appendix Figure O.11 shows analogous
estimations for alternative partitions (j = 5, and j = 20) of the initial farm size distribution.
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4.2 Household-Level Regressions

We now examine whether the effects of temperature shocks on household outcomes align

with the aggregate patterns in land sales and farm size, and support our interpretation of

land sales as a consumption-smoothing device. Similarly to Section 2, we estimate:

yf,i,t = αTempShocksi,t +X ′i,tτ + ιf + κt + ψf,i,t, (7)

where yf,i,t denotes an outcome for household f in municipality i, and survey round t =

{2010, 2013, 2016}. Vector Xi,t denotes controls for log aggregate rainfall at t and five lags,

ιf represents household-level fixed effects, and κt year fixed effects.

Table 4 shows that temperature shocks decrease the likelihood that households own land

and increase the probability of landowners having less than three hectares (columns 1 and

2). Additionally, there is an imprecisely estimated negative coefficient for log farm size—but

as shown earlier, effects are heterogeneous across small and large farms. Temperature shocks

also increase that households sell other types of assets: as shown in columns 4 and 5, farm

animals and the value of a principal component index of asset ownership, which includes

appliances, vehicles and other household assets, fall with the temperature shock. Appendix

Table O.8 shows that this is driven by a decrease in the likelihood that households own a

wide variety of assets. Column 6 shows that households are also more likely to migrate when

experiencing the shock, a result that is consistent with findings from Ibáñez et al. (2022) for

El Salvador. Lastly, temperature shocks have a sizable effect on the monetary value of per-

capita consumption –a 12% drop per 100 additional days according to column 7–, indicating

that households are unable to fully smooth consumption despite the various types of asset

liquidation that we observe.

Table 4: Temperature Shocks and Household Decisions

Household
Has Land

Farm Size
≤ 3 ha

Farm
Size

HH sold
Animals

Asset
Index

Household
Migrated

Consumption
per capita

(1) (2) (3) (4) (5) (6) (7)

TempShocks -0.065*** 0.055*** -0.074 0.043*** -0.118*** 0.062*** -0.118***
(0.016) (0.019) (0.068) (0.008) (0.014) (0.017) (0.023)

Observations 11,905 9,918 9,918 11,422 11,422 11,905 11,418
R2 0.639 0.718 0.741 0.931 0.611 0.533 0.731
Mean Dep. Var 0.88 0.74 2.96 0.69 -0.00 0.12 2.66

Notes: Data from ELCA. Dependent variables from left to right: a dummy indicating if household owns any land; a dummy
indicating if household’s landholdings are below 3 hectares; log farm size; a dummy indicating if household sold animals; a
principal components asset index that include household and farm assets, a dummy indicating if household migrated between
survey waves; and the log value of per capita consumption in 2016 Colombian pesos (in millions). All regressions include a
control of log aggregate rainfall at t and five lags, and household and time fixed effects. Mean Dep. Var. is the mean of the
untransformed variable. Robust standard errors reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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4.3 Mechanisms

Section 5 develops a theoretical model that rationalizes our collection of results through the

lack of access to insurance mechanisms. Farmers sell land and exit agriculture, in part, to

smooth consumption when experiencing negative income shocks. In particular, small farmers

are more likely to use these coping strategies because of their lower consumption levels, which

implies higher marginal utility of consumption and greater gains from increasing present

versus future consumption. Because the shock is temporary, the future value of becoming

a farmer for landless households remains unaffected, but the price of land that landless

households face still falls, because current farmers who are experiencing the negative shock

are trying to sell their land to smooth consumption. Quantitatively, that can lead to an

increase in the number of farmers and a decrease in average farm size after the shock.

We engage with three alternative mechanisms that could rationalize some of our results.

First, the lack of contiguity between large and small farms might limit the expansion of larger

farms after the shocks. To assess this hypothesis, we construct a measure of contiguity

between large and small farms in each municipality using land registry maps from 2017.

Within each municipality, we calculate the share of farms below the 10th percentile of the

size distribution that are contiguous to at least one farm above the 90th percentile. We then

classify municipalities with high-contiguity as those with a share above the national median.

Second, small farms might be more easily converted to residential or recreational purposes,

which is more likely in the outskirts of cities due to urban expansion. We investigate this

hypothesis by focusing on municipalities located farther than the median distance from main

cities, where these alternative uses are more frequent.20

Table 5 shows that the evidence on the importance of these two alternative mechanisms

is weak. Panel (a) includes an interaction term with an indicator for high contiguity. Col-

umn 3 provides some evidence that the lack of contiguity may interact with the shock, but

coefficients are small and not statistically significant for the number of owners and average

farm size. Moreover, Appendix Table O.10 shows that the result on median farm size is not

robust to an alternative measure of contiguity based on the GPS coordinates from the 2014

National Agricultural Census. Panel (b) adds an interaction term with a dummy variable

for municipalities located farther than the median distance from the main cities. Results are

statistically insignificant for columns 2 and 3 and, contrary to what this mechanism would

imply, we observe a larger increase in the number of landowners in municipalities farther

from large cities.

20Appendix OB.4 also discuss the land ceiling regulation that applies in Colombia for government allocated
land and present some results showing that the restrictions to land consolidation imposed by these size ceilings
are not likely to explain land fragmentation after extreme temperature.

18



For our third alternative mechanism, we investigate if our results are due to institu-

tional factors stemming from Colombia’s land regulation policies. Law 160 of 1994 imposed

municipality-specific land ceilings that placed a cap on the amount of government-allocated

land that any private individual can buy. Appendix OB.4 re-estimates equation 4 and

include an additional interaction term for municipalities with an above-the-median share

of government-allocated farmland—i.e., where this restriction would be most binding—and

show that the land ceiling policy is not driving our results.

Table 5: Temperature Shocks and Farm Size - Heterogeneous Effects
Number of

Owners
Mean

Farm Size
Median

Farm Size
(1) (2) (3)

Panel A: Land Registry Map - Contiguous Plots

TempShocks 0.012** -0.014** -0.032**
(0.005) (0.006) (0.014)

TempShocks×High -0.004 0.004 0.024*
(0.005) (0.006) (0.013)

Observations 9,499 9,499 9,499
R2 0.991 0.993 0.973
Mean Dep. Var 2,573.13 32.05 16.23

Panel B: Distance to markets

TempShocks 0.010* -0.013** -0.027*
(0.006) (0.006) (0.015)

TempShocks×High 0.011* -0.006 0.007
(0.006) (0.006) (0.012)

Observations 9,683 9,683 9,683
R2 0.991 0.993 0.974
Mean Dep. Var 2,566.22 31.98 16.10

Notes: Data from the National Land Registry (Catastro Nacional), mantained by the National Geographical Institute (IGAC).
All dependent variables are in logarithms. The main independent variable is the total number of atypical temperature days
in the past two years (t − 1, t − 2) divided by 100. Controls are , log accumulated precipitation during and five lags, log
accumulated allocations, log area covered by the land registry and an indicator of registry updates. Regressions also include
year and geographic fixed effects. High in panels A indicates a dummy variable equal to one for municipalities with a high
(above the median) share of farms below the 10th percentile of the size distribution that are contiguous to at least one farm
above the 90th in the 2017 land registry map. In panel B it indicates a dummy variable equal to one for municipalities located
at a diving distance to the nearest city above the national media. See text for more details. Standard errors clustered at the
municipality level are reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.

4.4 Alternative Specifications and Measures of Weather Shocks

In Appendix OB we show that our reduced-form results are robust to a host of alternative

specifications and specific variable definitions. We first show that results for the impact of

weather shocks on land sales, mortgages, number of owners, and mean and median farm size

are robust to a flexible-lag specification that allows for variation in the timing of the effects

with respect to the onset of the shock. This specification—described in equation (O.1)—

estimates independent coefficients for the impact of weather shocks occurring each year
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between t and t − 7. Results for this exercise are presented in Figures O.9 andO.10, and

show that extreme temperature events can have lasting effects several years after the shock

takes place and that our results do not depend on the specific choice of lags used for the

definition of the shock.

Second, Tables O.4 and O.5 report estimates from equation (4) using alternative defini-

tions of temperature shocks. Panels A and B define atypical temperature using as thresholds

the 5th and 95th percentiles and the mean ± 1.5 standard deviations of the temperature

distribution, respectively. Panel C uses the same threshold as the main specification, but

adjusts the time reference for computing the temperature distributions to 1990-2011. Panels

D and E define shocks using the SPEI index.

Finally, Tables O.6 and O.7 provide results from alternative specifications. Panel A

incorporates departamento-specific time trends, which allows us to account for potential

spurious correlations between regional temperature shock trends and our variables of interest.

Panels B and C control for forced displacement and homicide rates to capture the impact of

violent conflict within municipalities. Panel D presents results from the main specification,

clustering standard errors by municipality and departamento × year.

5 A Quantitative Model of Farm Size Dynamics

Motivated by the previous empirical facts about the dynamics of farm size distribution

and the influence of weather shocks, in this section we develop a dynamic, heterogeneous

household model in which uninsured households choose whether to be a farmer or a worker,

and, if they choose to be a farmer, how much land to buy for production. Based on our

institutional setting, our model features no rental markets for land. Instead, households

have to buy their land in every season, prior to the harvest season, under the uncertainty

about their future farm productivity. As such, households purchase land to build wealth,

but land also acts as a smooth consumption device. The joint occupational and landholding

decisions of heterogeneous households determine the farm size distribution of the economy.

After laying out the model, we describe our calibration procedure. In the next section,

we use our calibrated model to quantify the aggregate implications of farm size dynamics

and weather shocks to aggregate agricultural productivity.

5.1 Environment

The economy operates over time t, which is discrete. Each period represents a year, during

which one harvest season occurs. The economy is endowed with an exogenous supply of land
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L and of households N .

There are two occupations in this economy: farmers and workers. Farmers own land

`t > 0, have farming productivity st, and earn agricultural profits πt. Their production

technology is given by

yt = (Ztst)
1−γ (`αt k1−α

t

)γ
, (8)

where Zt is the aggregate climatic condition of the economy and kt is the farm capital.

γ ∈ (0, 1) is a span-of-control term and α ∈ (0, 1) is the share of land. The rental rate of

farm capital, r, is exogenous and independent of t. Optimal choice of farm capital gives the

following equation for agricultural profits

πt ≡ π (Zt, st, `t) = ξ
[
(Ztst)

1−γ (`αt )γ
] 1

1−γ(1−α) , (9)

where ξ is a constant that incorporates the production function parameters and the rental

price of capital.21

Workers are landless `t = 0, receive signals of their farming productivity st, and earn

wages wt, which are not affected by the climate condition Zt.

At each period t, households receive the option of becoming a farmer in t + 1 with

probability 1−δ, otherwise they become workers—δ is therefore an exogenous exit probability

for farmers. If given the option of becoming a farmer, households draw a taste shock for each

occupation, denoted by εF for farming and εW for working, and decide whether to exercise

that option. Should they choose to become a farmer, they must purchase land `t+1 for the

next harvest season. In any other case, they become workers in t + 1, sell any land they

might own, and consume all of their earnings.

The timing of the model within each period t is as follows:

1. The aggregate climatic condition Zt is observed.

2. Workers observe their farm productivity st and their wage wt.

3. Households receive the option of becoming a farmer and choose their occupation for

t+ 1.

4. Farmers receive πt, workers earn wt, land market opens, and households consume.

5. Farmers transition to their next farming productivity st+1.

21Here, ξ ≡ [r]
γ(1−α)

1−γ(1−α)

[
γ (1− α)

γ(1−α)
1−γ(1−α) − γ (1− α)

1
1−γ(1−α)

]
.
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5.2 Distributional Assumptions

Farming productivity st follows a stochastic process log st+1 = ρ log st + σεt+1, where εt ∼
N (0, 1) is a productivity shock, ρ ∈ (0, 1) is the persistence, and σ > 0 is the volatility of εt.

We denote the conditional distribution of farming productivity is Gs (st+1|st), with density

g (st+1|st). Workers draw their signal of farming productivity from the stationary distribution

of st from G̃s (st), with density g̃s (st). The wage distribution of workers comes, given by

Gw ∼ logN (µw, σw) with density gw. Taste shocks εF and εW are drawn independently from

an extreme value type one distribution (EVT1) with dispersion parameter κ.

5.3 Optimization problem

Households live forever and are indexed by ωt. Their preference is described by their long-life

utility U(c) = E [
∑∞

0 βtu(ct)], where ct is consumption and u (ct) is the utility function—

which is assumed to be log utility. Households are characterized by a triple (wt, st, `t). Notice

that farmers earn no wage, so that wt = 0, and workers own no land, so that `t = 0 and

πt = 0.

The households’ optimization problem can be written in a recursive form. They choose

their occupation and land purchases based on the start-of-the-period value function

V (ωt) = (1− δ) max {VF (ωt) + εF , VW (ωt) + εW}+ δVW (ωt) (10)

where the value of becoming a farmer in t+ 1 in the current period t, VF (ωt), is

VF (ωt) = max
ct,`t+1

{u (ct) + βEs (Eε (V (ωt+1)) |st)} (11)

s.t. ct = wt + π (Zt, ωt) + pt (`t − `t+1) ,

and the value of becoming a worker in t+ 1 in the current period t, VW (ωt), is

VW (ωt) = max
ct
{u (ct) + βV0 (ωt)} (12)

s.t. ct = wt + π (Zt, ωt) + pt`t

Here, V0 (wt) is an exogenous value of becoming a worker. For simplicity, we assume that

V0 = V W
0 if wt > 0 and V0 = V F

0 if wt = 0. This formulation captures, in a parsimonious

way, the fact that farmers and workers might perceive different values of becoming a worker,

for example due to sectoral relocation costs.

The optimal choice of land in equation (11) is `∗ (ωt). When farmers do not buy any
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additional land, so that `t = `∗ (ωt), consumption equals agricultural profits ct = π (Zt, ωt).

In contrast, if `∗t+1 (ωt) > `t, then farmers sacrifice consumption in t to increase potential

profits in the future. Lastly, if `∗t+1 (ωt) < `t then farmers increase their consumption today

at the expense of expected future profits.

Because εF and εW are drawn from a EVT1 distribution, as is common in the literature,

the expected value is given by the following equation

Eε (V (ωt)) = κ log

(
exp

(
1

κ
VF (ωt)

)
+ exp

(
1

κ
VW (ωt)

))
, (13)

and the probability that a household ωt will choose to farm in t+ 1 if the option arises is

µ (ωt) =

exp

(
1

κ
VF (ωt)

)
exp

(
1

κ
Eε (V (ωt))

) . (14)

5.4 Evolution of distributions

At the beginning of period t, the density of households is g(ωt) and the cumulative distri-

bution is G(ωt). The end-of-the-period density of households who become farmers in t + 1

is

hF (ωt) = (1− δ)µ (ωt) g (ωt) ,

and the distribution of households who become farmers in t+ 1 is

g (ωt+1|wt+1 = 0, `t+1 > 0) =

∫
g (st+1|ωt) a (`t+1|ωt)hF (ωt) dωt, (15)

where a (ωt) is a policy function that equals one if household ωt chooses `t+1 = `∗ (ωt) and

zero otherwise. The end-of-the-period density of households who become workers in t+ 1 is

hW (ωt) = δµ (ωt) g (ωt) ,

and the distribution of households who become workers in t+ 1 is

g (ωt+1|wt+1 > 0, `t+1 = 0) =

∫
g̃s (st+1) gw (wt+1)hW (ωt) dωt. (16)

The density of households in t+ 1 is therefore the sum of conditional densities in equations

(15) and (16).
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5.5 Land market clearing

The end-of-the-period demand for land in period t is

LDt =

∫
`∗ (ωt)hF (ωt)Ndωt. (17)

In each period t, the price of land pt ensures that land market clears

L = LDt . (18)

5.6 Stationary Equilibrium

Given distributions {Gs, G̃s, Gw}, a mass of households {N}, a land endowment {L}, pro-

duction function parameters {α, γ}, an exogenous exit probability {δ}, an exogenous farm

capital rent {r}, and an aggregate climatic condition {Z∗}, a stationary competitive equilib-

rium are optimal consumption and land choices {`∗,c∗}, a land price {p∗}, and an invariant

distribution {G∗} such that: land and consumption choices are optimal and satisfy (10) to

(12), occupational choices given in equation (14) are optimal (14), land markets clear so that

equation (17) is satisfied, and the stationary distribution is consistent with equations (15)

and (16).

5.7 Calibration

To simulate the model, we need parameter values for the agricultural production function

(α, γ, ρ, σ, and Zt), the wage of workers (µw and σw), the occupational choices (κ, δ, V W
0

and V F
0 ), the discount rate (β), and the labor and land endowments (N and LS). Our

procedure combines estimation with a calibration algorithm. Several parameters we pick

from the literature, the remaining ones are calibrated so that the stationary equilibrium of

the model matches a series of statistics in the data related to farm size distribution and

households occupational choices. Table 6 summarizes the parameters and the statistics that

we target in our calibration.

Before applying our calibration algorithm, we pick from the literature or estimate the

following parameters. First, for the agricultural production function, we set γ = 0.47 and

α = 0.46 based on estimates from Avila and Evenson (2010) for Colombia. These values

imply a share of land of 0.22, which is largely within the values used in the literature.

The discount rate comes from Greenwood et al. (2019), who estimate this parameter in the

context of a developing country. We borrow κ from the literature on migration and sectoral

relocation. Here, the literature finds values between 0.5 and 4, by using regional and sectoral
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Table 6: Summary of Calibration of Parameters

Symbol Value Description Target/Source Target Value
γ 0.47 Share of inputs Avila and Evenson (2010) -
α 0.22 Share of land Avila and Evenson (2010) -
β 0.96 Discount rate Greenwood et al. (2019) -
κ 4 Occupational choice elasticity Migration Literature -
ρ 0.75 Serial correlation in yields Regression of yields -
N 0.17 Total mass of agents Average Farm Size 5.98
σ 2.2 Volatility of shocks S.d. of farm size 15.50
δ 0.05 Exogenous exit probability Share of large farms who exit 0.05
V F

0 -51.1 Value of becoming a worker Share of small farms who exit 0.08
VW

0 20.3 Value of staying as a worker Share of workers in agriculture 0.15
µw -2.37 Average of log wage Mean farm size of new entrants 1.32
σw 1.12 S.d. of log wage S.d. of farm size of new entrants 2.39
Zss 1 SS aggregate productivity Normalization -
LS 1 Total supply of land Normalization -

flows of workers. We set κ = 4, so that we capture a lower sectoral elasticity, which is

consistent with higher frequency of our data (annual). Lastly, we estimate ρ using farm-level

longitudinal data from ELCA, by estimating the autocorrelation over the years between

model-implied measures of farm productivity—see details in Appendix OC. Without loss of

generality, we normalize Zss = 1, the steady-state aggregate productivity, and LS = 1.

We calibrate the remaining parameters {N, σ, V F
0 , δ, V

W
0 , µw, σw} so that the stationary

equilibrium matches six statistics in the data exactly. Specifically, N matches the average

farm size, σ the standard deviation of farm size distribution, V F
0 the exit rate of small farms

(below 2.7 hectares), and δ the exit rate of larger farms (above 2.7 hectares), V W
0 , the share

of farmers in the economy, µw the average farm size of new entrants, and σw the standard

deviation of the farm size distribution of new entrants. The farm size distribution statistics

are constructed using data from the agricultural census of 2014. The farm size distribution

for new farmers and the exit rates are computed using our longitudinal farm level data

(ELCA). The share of workers employed in agriculture comes from ILO.

6 Farm Size Dynamics and Agricultural Productivity

This section uses our calibrated model to assess: (1) how risk shapes agricultural productivity

and misallocation in the stationary equilibrium; and (2) how weather shocks affect transition

dynamics in terms of the farm size distribution and agricultural productivity.

25



Figure 4: Farm Size Distribution and Misallocation in the Stationary Equilibrium

(a) Farm Size Distribution (b) Misallocation

Notes: This figure shows the farm size distribution generated by the model and the implied farm size
distribution if the marginal product of land equalized across farmers, for example, due to the existence
of rental markets. The optimal farm size is computed based on equation (19), assuming the stationary
distribution of farm productivity.

6.1 Risk and Agricultural Productivity in the Stationary Equilibrium

We start by examining the implications of uninsured risk to misallocation, as measured by the

dispersion in marginal product of land based on the stationary equilibrium. If markets were

operating perfectly, land would be allocated to farmers with the highest marginal product

of land, until the marginal product of land were equalized across farmers. In our model,

however, two mechanisms prevent the marginal product of land from being equalized across

farmers: (1) farmers have to buy their land before observing their effective farm productivity,

so that we have a mismatch between the period in which the factor is chosen and the actual

realization of the productivity; and (2) the lack of credit markets will induce farmers to treat

land transactions as a consumption smoothing device.

Let us start by defining the marginal product of land (MPL) in the context of our model,

given optimal choices of farm capital. Using equation (9), the marginal product of land of a

farmer is

MPLt ∝
πt
`t
. (19)
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If there were a rental market for land, then the marginal product of land would equalize

across farmers, via land rents. In that case, the land allocation across farmers would be

proportional to farm productivity st.
22

Figure 4(a) shows the optimal and the actual farm size distribution. The optimal disper-

sion in farm size is substantially smaller, with fewer small and large farms. Specifically, the

standard deviation of the actual farm size distribution is 29 percent higher than the standard

deviation of the optimal farm size distribution. Panel (b) shows that more productive farms

have a larger marginal product of land—similarly to findings in Adamopoulos et al. (2022).

Therefore, the optimal farm size distribution would require a relocation of land from less to

more productive farms. To understand the implications of this misallocation to output, the

total output of the economy in the baseline calibration if land were allocated optimally is 32

percent higher than the actual output.

6.2 Weather Shocks and Transition Dynamics

We now turn to the transition dynamics. We simulate a temporary, unexpected shock of 25

percent reduction in the aggregate agricultural productivity Zt, with a low correlation over

time, such that Zt is virtually back to its level pre-shock level by the fifth period.23 Figure

6 (a) shows the impact on land prices. They fall by 20 percent with the climate shock,

and remain. As a result, agricultural output falls by approximately 25 percent and farmers’

consumption falls by 15 percent for those who exit, and 26 percent for those who stay.

Here, consumption smoothing occurs mostly via changes in occupational choice—farmers

who do not exit sacrifice consumption to keep their landholdings. Figure 5(a) shows that

smaller and less productive farmers are more likely to leave the agricultural sector, since

they have a higher utility from consumption — Appendix OD derives analytical results that

show how productivity and price shocks affect occupational choice of farmers with different

landholdings.

We notice that, in the data used in our reduced-form section, the average climate shock

is 100 days. According to results from Table 4, an average shock leads to a 11.8 percent

reduction in consumption. We therefore interpret our 25 percent reduction in aggregate

agricultural productivity being roughly twice as large as the average shock estimated in the

reduced-form section.

We now turn to the dynamic implications of a climate shock to the average farm size.

22Specifically, the amount of land that a farmer with productivity s would operate would be given by

`(s) =
s∫

sdG (ω)
LS

23To solve for the transition dynamics, we use the Sequence Space Jacobian approach proposed in Auclert
et al. (2021).
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Figure 5: Impact of a Weather Shock on the Exit Probability at t = 0

(a) Farm Size (b) Farm Productivity

Notes: This figure shows the impact of a temporary weather shock on the change in the probability of
becoming a farmer µt at t = 0. Panel (a) averages over the density of agents in terms of their landholdings.
Panel (b) averages over the density of agents in terms of their farm productivity.

Figure 6 Panel (d) shows that average farm size falls by 1.2 percent. Recall that, in the

reduced-form estimate, an average shock reduces average farm size by 1.6 percent—our result

is therefore in the same order of magnitude as the one implied by the data. Importantly,

our model implies a very strong persistence: 10 years after the shock, the average farm size

is still 0.6 percent smaller.

The reason why we observe this influx of agents from urban to agriculture is primarily

due to the short-term nature of the shock. When productivity falls, some farmers sell their

landholdings and some of them exit agriculture altogether. That leads to a reduction in

the price of land. For landless households, the value of becoming a farmer, however, is only

mildly affected, because future agricultural productivity returns to its level shortly after the

shock. As a consequence, this reduction in the price of land, without an equivalent drop in

the present value of becoming a farmer, attracts landless households to farming. In contrast

to the short-term shock, when we simulate a long-term one—i.e., when we simulate a shock

with a strong a strong persistence—, we then find an net outflow of farmers from agriculture

and increase in average farm size instead, since price reductions do not attract households

from non-agricultural activities as much—see Appendix Figure O.4.

To better understand mechanisms, it is useful to separate the influence of a drop in the

price of land pt from the influence of a drop in aggregate productivity Zt. Appendix OD

derive analytical results that base our discussion here. Let us first focus on a short-term
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Figure 6: Dynamic Effects of a Weather Shock

(a) Price (b) Total Ag-Output (c) Farmers’ Consumption

(d) Avg. Farm Size (e) Avg. Skill (f) Optimal to Actual Ratio

reduction in aggregate productivity Zt, ignoring general equilibrium effects on the future

value of becoming a farmer versus a worker or on land prices pt. In that case, the impact on

the incentives to become a farmer are unambiguous: current consumption falls, which makes

farmers value more the additional consumption they obtain by choosing to exit—a result

of the decreasing utility of consumption. One can think of this as agents becoming closer

to subsistence level of consumption, which makes them value more the additional current

consumption they get by their land to become a worker.

When we look at the impact of a reduction in the price of land pt, ignoring changes

in aggregate productivity Zt or future value of farming and working, the impact on the

probability of becoming a farmer is ambiguous. On the one hand, agents become poorer, since

their asset drops in value and they are unable to consume as much by selling their land—

similarly to the reduction in productivity Zt, that mechanism comes from the decreasing

utility of consumption. On the other hand, because land prices are lower, the purchasing

power of agents rise, which increases their incentives to become a farmer. Notice that workers

are only influenced by this last mechanism since they do not own any land. As such a

reduction in the price of land, holding everything else constant, will unambiguously increase
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their probability of becoming a farmer.

Lastly, we turn to the determinants of aggregate agricultural productivity. The average

skill of agents drops by 0.7 percent in the aftermath of the climate shock. That occurs

because agents in the urban sector, who have a comparative advantage in the urban sector

relative to agriculture, enter in the agricultural economy as a response to the shock, but they

take long to exit. As a result, even as long as 20 years after the shock, the average skill of

the farmers are smaller.

When we look at optimality within the agricultural sector, which considers the dispersion

in MPL given the pool of farm productivity in the economy, we observe an improvement.

Further inspection shows that this occurs because the negative shocks disproportionately

remove agents with low farm productivity, who have a high MPL — see Appendix Figure

5(b). The new farmers who enter the economy have in average lower farm productivity, but

they also own smaller farms.

7 Conclusion

This paper explores the effect of uninsured weather shocks on distress sales and farm size

dynamics. Exploiting a unique combination of datasets that include the transaction history of

hundreds of thousands of individual plots and a municipal-level census of rural properties we

find that shocks lead to an increase in the frequency of land sales and to a reduction in average

farm size. This reduction is driven by the smaller farms in the initial farm-size distribution

being further subdivided and purchased by previously landless households. Consistent with

the aggregate patterns we find on land sales and land distribution, we also show that these

shocks induce rural households to migrate, and decrease household’s consumption and asset

ownership.

Distress sales after a negative productivity shock might depress land prices. Our results

show that land fragmentation takes place after such shocks. We rationalize these results with

dynamic, heterogeneous household model in which uninsured farmers make landholding and

occupational choices. The combination of occupational choices with sector-specific shocks

leads to an expansion of the aggregate supply of land, a temporary drop in land values, and

to a net increase in the number of households occupied in agriculture operating relatively

smaller farms.

Our model results suggest that uninsured weather shocks constitute a substantial barrier

for productivity improvements in the agricultural sector of developing countries. Given that

extreme temperature shocks are expected to increase in frequency and severity in the near

future, these findings have important policy implications related to the expansion of financial
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tools designed for risk management in rural settings.
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OA Data

This section describes in detail all the sources of data that we use from Colombia. Appendix Table O.2

offers summary statistics for our main datasets.

OA.1 Land Transaction Data.

Recipients of land in Colombia must register the property in the office of the local public notary, and

all formal land transactions carried out over the estate, including mortgages, must be registered in the

national land registry mantained by the SNR. Our land transaction dataset contains the whole transaction

history of all land plots granted by the government to private individuals at any point between 1900 and

2010. We match the location of the property in the SNR dataset to the official list of Colombian

municipalities provided by DANE, Colombia’s National Statistical Agency.24 Using this information, we

construct a balanced yearly panel both at the municipality with information on the number of full and

partial land sales, mortgages, and government land allocations.

The Colombian government has carried out the free allocation of public idle lands (bald́ıos) to private

individuals uninterruptedly since the beginning of the twentieth century. These allocations have become

the largest and most consequential land reform policy instrument employed by the national government

(Albertus, 2015). Formally, a bald́ıo allocation is an administrative resolution issued by the national

government to transfer state-owned vacant land to a private party. This allocation process has mostly

consisted of a combination of frontier-settlement schemes where unused public lands are granted to poor

smallholders, and of programs focused on the titling of state-owned lands that might have been previously

informally occupied (Ibáñez and Muñoz, 2010).

The bulk of government-owned land allocations began in the midst of the US Alliance for Progress

program with the enactment of the Social Agrarian Reform Act (Law 135) in 1961, which established the

land reform agency (INCORA, later renamed as INCODER, and currently the National Land Agency,

ANT). During the second half of the twentieth century, land allocation laws were amended on three

occasions (Law 01 of 1968, Law 30 of 1988, and Law 160 of 1994) but the explicit objective of the

policy always remained that of reducing land inequality and giving land to landless farmers (CNMH,

2016). Figure O.2 shows the evolution of bald́ıos allocations since 1901, the vast majority of which

were granted between 1960 and 1990. In terms of the number of beneficiaries and the amount of land

allocated, the scale of the policy has been vast. More than 550,000 land properties have been granted to

private individuals in 1,034 of the 1,122 existing municipalities. These properties account for 23 million

hectares –more than half of the currently privately-held land in the country (Sánchez and Villaveces,

2016; Arteaga et al., 2017).

Land petitioners undergo an administrative process with the national land agency to determine if

they fulfill the legal requirements to become a beneficiary. While the requirements have changed in

24Municipalities are the smallest official administrative division in Colombia. There are approximately 30,000
veredas in Colombia and 1,123 municipalities.
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time, the most important conditions petitioners must fulfill involve owning no other land and having an

income below a given threshold. Under the current legislation, the process formally consists of nine steps,

which include the placement of an ad announcing the allocation in a local newspaper, and a physical

inspection of the land to be granted. Although on paper this procedure should take 60 days, allocation

processes are generally much lengthier and some can take years (Gutiérrez Sańın, 2019). Appendix

Figure O.5 shows the evolution of the average and median size of allocated properties since 1960. The

overwhelming majority of land allocations made throughout 1961–2014 period consisted of relatively

small land properties, with a median allocation size across municipalities of 6.6 hectares. Importantly for

this paper, Law 160 of 1994 established a ceiling on the amount of government-allocated land to which

a single individual can claim ownership. This limit, defined by the municipality-specific Agricultural

Family Unit (UAF), restricts the capacity of relatively larger farmers to purchase land that was initially

government-owned. In appendix section OB.4, we show that these land ceilings are not driving our

results.

The universe of land allocations made by the government throughout 1901–2011 period is registered

in the System of Information for Rural Development (SIDER) dataset currently maintained by the

ANT. After receiving the property, beneficiaries must register the property in the office of the local

public notary, and all formal land transactions carried out over the property (including mortgages) are

henceforth registered and stored in a dataset maintained by the National Superintendence of Notaries

(SNR), the government agency that supervises regional notaries and keeps a record of all real estate

market transactions held among private parties.25

Our main source of data is the transaction history of all bald́ıo allocations whose beneficiaries regis-

tered their property with the notary thus finalizing the process to obtain a formal property right.26 We

mainly focus on land purchase transactions, which can be either the transfer of an entire property from

one individual to another, or the subdivision and sale of only a fraction of the original properties. We

refer to these types of transactions as full sales or partial sales respectively. We also study mortgages, as

they could constitute an important adjustment margin when coping with negative productivity shocks.

For each transaction held between two parties, we have access to information on the property’s location,

the date in which it occurred, and the type of transaction.

OA.2 Farm Size Distribution.

For over 50 years, the National Geographical Institute of Colombia (IGAC) has collected information on

land use and ownership and keep land valuations up to date. Law 14 of 1983, instituted a farm-level

25The history of the transactions carried out over a property, named the Certificate of Liberty and Tradition
(Certificado de Libertad y Tradición) is public information that can be consulted by paying a small fee for any
property with a real estate registration number on the web page of the SNR.

26While the registration process was not automatic and a non-negligible number of beneficiaries failed to follow
this last administrative step (Faguet et al., 2020), Appendix Figure O.6 shows that allocations and real estate
registrations follow each other closely across time, suggesting that the great majority of land properties allocated
did end up being registered.
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information collection system (the ‘Ficha Predial’ system) which has been implemented and maintained

by IGAC since then. This system is meant to collect information on the location, size, and economic

purpose of all real properties in every Colombian municipality with the exception of the state of Antioquia,

which runs its own, independent, cadastral information system (Ibánez et al., 2012).

This information system is meant to be an up-to-date census of land ownership for the whole country,

and the law stipulates that IGAC must carry out cadastral updates in every municipality every five years.

Information is not, however, updated on a regular basis and the amount of time between cadastral updates

varies significantly across municipalities.27 Martinez (2019) shows that IGAC updates are not driven by

changes in economic conditions of the municipalities (e.g. property booms).

In our study, we use municipal-level aggregate information from all farms in IGAC’s cadastre that

are i) privately owned, and ii) categorized as having an agricultural economic purpose. This amounts to

roughly 40 million hectares of land. We use a yearly panel of municipalities with the number of farms,

the number of owners and average farm size within size ranges as calculated by (Ibánez et al., 2012).

The data from the land registry is only available for the period 2000-2011, and so we restrict our analysis

to this time period. We exclude from our final sample of municipalities (both for the transaction-level

data and for the land registry data) large metropolitan areas and municipalities with very few (i.e. below

the 99th percentile) properties registered. Our final sample is made up of 927 municipalities, which

encompass 85.3% of the rural population in the country.

OA.3 Land Transaction Data - Landless Buyers.

The observed increase in the number of landowners per municipality shown in Figure O.10 and Table 2

indicates that large landowners within the municipality are not expanding their operations by purchasing

the small plots sold after the shocks. We cannot rule out, however, the possibility that these plots are

being acquired by large landowners from nearby municipalities.

To investigate this, we compile yearly lists of landowners at the departamento level using the history

of land transactions. We define an individual as a land owner if it appears in the land registry data at

the receiving end of a transaction—be it a sale, an inheritance or a government allocation—and build a

list of current owners for every year in our sample. We then match the names of individuals buying land

on a given year with the list of current landowners to determine whether such buyers owned any land in

any other municipality of the departamento.

Since we do not have information on the ID numbers of buyers and owners, we match individuals

in both lists by first and last name, and work under the assumption that all registries under the same

name within a departamento belong to the same individual. Because names are subject to mis-spellings

or changes in the order in which first and last names are recorded, we carry out this matching process

27There are currently 80 municipalities across the country in which IGAC has not yet established the census-level
cadastral information system. These municipalities have, instead, a self-reported information system (‘Catastros
Fiscales’) in which landowners voluntarily register their properties in regional IGAC offices.
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using different types of string matching algorithms which vary in how conservative they are regarding the

occurence of type-I errors (exact matching, bigram, and Jaro-Winkler distance) and compare the results.

OA.4 Weather Shocks.

We define temperature shocks that are specific to each administrative unit in order to account for the

very large variation in climatic conditions across Colombian rural areas. The shocks are defined based on

the unit’s specific distribution of weather realizations, which we compute using long-run daily weather

measurements (similar, for example, to Kaur (2019)). While this approach contrasts with weather shock

definitions based on a fixed temperature threshold, which might be more suitable for the analysis of a

specific region or crop (see, for example, Ibáñez et al. (2022)), we show that our results are robust to

measures such measures of shocks that use fixed thresholds.

We construct measures of temperature shocks using the ERA5 data set, provided by the Copernicus

Climate Change Service (C3S) of the European Centre for Medium-Range Weather Forecasts (ECMWF).

This dataset contains global reanalysis information on temperature with a horizontal resolution of 0.25×
0.25 degrees (approximately 28 km2 depending on the longitude) at an hourly frequency.28 We use the

temperature of the atmosphere two meters above the surface (in degrees Kelvin) from 1979 to 2016 in

ERA5 for pixels in mainland Colombia. For each pixel in the data, we compute the average temperature

for each day d, and obtain the average daily temperature of each municipality-day pair (m, d) by taking

a weighted average of the pixels in the municipality using as weights the area of the pixel relative to the

total area of the municipality. We compute the historical quarterly distribution of daily temperatures

by considering all temperature measurements for pairs m, d in calendar-quarter q throughout the period

1979–2016. For each municipality this results in four distributions, one per quarter. We compute the 20th

and 80th percentiles of each distribution and define the average temperature of a given municipality-day

as atypically high if it is above the 80th percentile of the corresponding distribution of average daily

temperatures of m, q. Analogously, we define a day as having atypically low temperatures if it is below

the 20th percentile of the corresponding distribution.

Finally, for each year t, we sum the number of atypically high or low temperature days in each

quarter. In our baseline specifications, we estimate the effect on outcomes measured at the municipality-

year (m, t) frequency and use as our preferred measure of weather shock the total number of days with

atypical temperatures over the past two years (i.e. t−1, t−2). Figures O.7 and O.8 in the appendix show

the spatial and temporal variation of the resulting temperature shock measures across municipalities.

This definition of temperature shocks has two advantages. First, it takes into account seasonality at the

calendar quarter level since the distribution is specific to q. For example, since some calendar quarter of

the year are typically hotter, we only consider a day as atypically hot if the temperature is high relative to

the historical temperature of that quarter. Second, the measure is specific to the municipality and takes

28Reanalysis weather information from the ERA5 results from the combination of climate models and observa-
tional data from satellites and ground sensors.
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into account that an absolute temperature might be atypically high and have a negative consequence in

one place but not in another.

In the empirical exercises below we also control for total rainfall. To construct this measure we use

the ERA5 monthly precipitation reanalysis data with resolution 0.1× 0.1 degrees (approximately 9 km2

depending on the longitude) and use the conversion factor provided C3S to obtain a measure of total

monthly precipitations in cubic milliliters for each pixel. We then obtain a weighted average across the

pixels in the municipality to obtain monthly average rainfall. Again, we use as weights the size of the

pixel relative to the size of the municipality. For a given year, we add across months to obtain a measure

of total precipitation in the pair municipality-year (m, y).

OA.5 Farm-Level.

We complement the previous data sources with data from a household panel that we use to analyze

how farmers’ decisions change in response to temperature shocks. In particular, we use the Colombian

Longitudinal Survey conducted by the Universidad de los Andes (ELCA). The ELCA includes a sample of

4,800 rural households interviewed over three survey rounds (a baseline collected in 2010 and two follow-

ups in 2013 and 2016). The rural sample of the ELCA is representative of small agricultural producers

in four micro-regions: Atlantic, Central, Coffee-Growing, and South. Within each region, municipalities

and veredas were randomly chosen. The baseline sample includes 17 municipalities. In the follow-up

rounds enumerators resurveyed all households and, if the household had split off or migrated, tracked the

household head, spouse, and children under nine in 2010. The attrition rate after three waves in 2016

was 13.5%. The household questionnaire collected detailed information on land ownership and migration

of household members which we use to complement our empirical analysis. We are interested inhow

migration, farm size, land ownership, and household consumption change in response to temperature

shocks. Panel B of O.2 contains descriptive statistics of the ELCA panel. On average, 12% of households

migrated, 88% had any land and the average size of the farm was 2.5 hectares, with 75% of farms being

smaller than 3 hectares.

OB Additional Reduced-Form Results

OB.1 Flexible specification

We estimate a flexible-lag specification that further exploits the spatial and temporal variation in the

occurrence of extreme temperature events, and estimates independent coefficients for the impact of

weather shocks occurring each year between t and t − 7. This specification allows for the possibility

that households may exhaust alternative coping mechanisms after consecutive years of adverse weather

conditions.

Specifically we estimate a regression of the form:
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si,t =

7∑
j=0

βj

365∑
d=1

AtypicalDayi,d,t−j +X ′i,tδ + ηi + κt + εi,t, (O.1)

where si,t represents the number of land transactions (sales or mortgages), log number of farm owners,

and log average and median farm size in municipality i and year t.29 Our main variables of interest,

AtypicalDayi,t−j , represent the number of days with atypical temperatures in the municipality during

year t− j. We include the contemporaneous value of this variable and seven lags.

The vector Xi,t includes time-varying municipality characteristics. In particular, rainfall at t and

seven lags, the cumulative number of farms allocated in the municipality up to t, which controls for the

land on which we observe transactions, a dummy variable for cadastral updates, and the total municipal

land area recorded in the registry, which accounts for changes in registry coverage. The model also

includes municipality fixed effects ηi to control for time-invariant heterogeneity across municipalities,

and year fixed effects κt to control for time-specific shocks to land markets and farm size common to all

municipalities.

The coefficients βj capture the reduced form effects of contemporaneous and lagged days of extreme

temperature on land transactions and farm size. Although distress land sales are likely to be an immediate

response to negative income shocks, notarizing a transaction and updating the property information on

the land registry are the final steps in the process of buying land, which can take several months or

even years.30 We complement the results from this dynamic specification with estimates of the aggregate

effect of temperature shocks over a two-year period. In particular, we estimate:

Figure O.9 presents the coefficient estimates from equation (O.1) using the total number of land sales

and land mortgages per municipality as dependent variables. The figure shows that increases in the

frequency of extreme temperature events lead to a rise in the number of land sales for up to two years

after their occurrence. Also, extreme temperature events increase the number of land mortgages, with

statistically significant effects lasting up to five years.

Figure O.10 shows the coefficient estimates of atypical temperature and its lags, with the number of

landowners (panel a), and mean and median farm size (panel b) as dependent variables in equation (O.1).

The figure indicates that atypical temperature days increase the number of landowners and reduce farm

size, with statistically significant effects starting two years later and lasting up to seven years. The longer

lag in the effects with the registry data aligns with land transactions being reported to the land registry

as the final step in the purchase process. Also, since the land registry reflects the stock of properties, the

shocks are likely to have permanent effects, unless further land transactions occur.

29We define farms as a piece of land with a distinct registry number.
30In this process, buyers and sellers first sign a transaction agreement, outlining a sequence of payment install-

ments. Usually, signing the public deed at a notary’s office takes place with the final payment. The signed deed is
then submitted to the local land registry office to formalize the transfer of ownership. We observe land transactions
on the date in which the public deed is signed and observe changes in average farm size and in the number of
owners for the year in which the deeds are submitted to the registry office.
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OB.2 Robustness in Farm Size Distribution and Land Transaction

Tables O.4 and O.5 report estimates from equation (4) using alternative definitions of temperature

shocks. Panels A and B define atypical temperature using as thresholds the 5th and 95th percentiles

and the mean ± 1.5 standard deviations of the temperature distribution, respectively. Panel C uses the

same threshold as the main specification, but adjusts the time reference for computing the temperature

distributions to 1990-2011. Panels D and E define shocks using the SPEI index.

Tables O.6 and O.7 report estimates from alternative specifications to the one in equation (4). Panel

A incorporates departamento-specific time trends, which allows us to account for potential spurious cor-

relations between regional temperature shock trends and our variables of interest. Panels B and C include

additional controls for forced displacement and homicide rates to capture the potentially confounding

relationship between violent conflict and weather shocks within municipalities. Panel D presents results

from the main specification, with two-way clustered standard errors at both the municipality, and the

departamento × year levels.

OB.3 Robustness in New Entry

We show here that results shown in Table 3—distinguishing which purchases are made by landless

individuals and which are made by those already owning some land elsewhere—are robust to the choice

of the matching algorithm and to the special sampling properties of the land transaction data.

First, given that the matching of buyers and owners is made based on first and last names which

are subject to misspellings, we show results obtained from different string matching algorithms (ex-

act match, bigram, and Jaro-Winkler) which are more or less conservative regarding the possibility of

wrongly matching two distinct individuals with similar names (type II error) or failing to match the same

individual across lists with a misspelled name (type I error). Panels A, B, and C of Table O.3 show that

our results do not depend on the type of matching algorithm chosen.

Second, given that the land transaction data is only available for plots which were at some point

allocated by the government to private individuals, it might be possible that individuals who own land but

are not observed in our owner lists are incorrectly classified as landless. This omission could potentially

bias the coefficient for sales to landless purchases (column 2 in Table 3) upwards.

To gauge the severity of this bias, we re-estimate these regressions using only municipalities where the

share of private farmland which was part of a government allocation is above the median. We expect that

in these municipalities the rate of individuals incorrectly classified as landless should be lower, given that

a larger share of land transactions are observed. Columns 4, 5, and 6 in Table O.3 show the coefficients

obtained from estimations carried out in this subsample alone. These results show that the share of total

weather-driven land purchases made specifically by landless buyers is almost identical in both samples,

suggesting any bias from this type of incorrect owner classification is low.
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OB.4 The Land Ceiling Regulation

We investigate if our results on the absence of land consolidation are due to institutional factors stem-

ming from Colombia’s land regulation policies. As discussed in section ??, Law 160 of 1994 imposed

municipality-specific land ceilings that place a cap on the amount of land originally granted by the gov-

ernment that any private individual can accumulate. This restriction could be consistent explanation for

the lack of land consolidation on the right part of the farm size distribution, since it restricts the capacity

of large landholders to acquire any new land farms whose provenance was a government allocation.31

To test if these restrictions are in fact explaining our results, we re-estimate the model in (4) including

an additional interaction term between the shock variable and a dummy indicating if the municipality is

above the median in the share of the municipality’s area that was at some point part of a government

allocation. The idea behind this test lies in the fact that land ceilings only apply to allocated land,

but not to other land farms. Hence, if restrictions are driving the land-fragmentation results shown in

Table 2 we would expect the bulk of the result to be concentrated in municipalities with a high share of

their agricultural land coming from government allocations.

As columns 5-8 in Table O.9 show, we find no such heterogeneity. Moreover, as shown in columns 1-4,

including the continuous value of the share of government-allocated land as a control has virtually no

impact on the magnitude or precision of the original estimates. We take these results as evidence that the

main findings of our paper are not driven by the specific institutional characteristics of land regulation

in Colombia.

OC Estimating ρ

To estimate the persistence in the farm productivity shock, we use our longitudinal farm-level data,

which contains data on total agricultural output per farm and the landholdings. Using that information,

we construct the following measure of sit

s̄t = Zt

[
ȳt(

¯̀α
t k

1−α
t

)γ
] 1

1−γ

,

where ȳt and ¯̀
t are our measured values. In what follows, we assume that Zt and kt are not systematically

correlated with ¯̀
t. We then postulate that the farm productivity of a farmer i in t is given by

log s̄i,t = ρ log s̄i,t−1 + σεi,t,

31The explicit purpose of the land ceilings, as stated in the text of the law, was precisely to prevent land
concentration by large landholders.
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where εi,t is the productivity shock. Since the gap between years in the data is three, what we effectively

observe is

log s̄i,t = ρ3 (log s̄i,t−3) + σ (εi,t−2 + εi,t−1 + εi,t) .

We estimate the regression above by adding a control for the probability of exiting during these three

years, which estimate using a logit model and using a polynomial of the initial farm size as the explanatory

variable. Our final estimation is

log s̄i,t = ρ3 (log s̄i,t−3) + β ̂P (exiti,t−3) + σ (εi,t−2 + εi,t−1 + εi,t) .

where ̂P (exiti,t−3) is the predicted probability that the farmer left over the three years period.32 This

procedure gives us the value of ρ.

OD Analytical Results

To better understand how the change in price shapes agents’ decision to become a farmer, we study

analytically the impact of a small change in land price and the aggregate productivity. We do so based

on equation (14), ignoring the general equilibrium effects, related to changes in the distribution, and

using envelope conditions.

OD.1 TFP shock and the probability of becoming a farmer.

For a given household, ωt = (wt , `t , st), the impact of a small change in Zt on her probability of becoming

a farmer µt is
∂µt
∂Zt

=
1

κ
µt (1− µt)

[
u′
(
cFt
)
− u′

(
cWt
)] yt
Zt

> 0

where cFt is the consumption if the household becomes a farmer, cWt is the consumption if the household

becomes a worker, and u′ () is the marginal utility of consumption. Notice that, because yt = 0 for

workers, they are unaffected by the shock.

In the equation above, we notice that u′
(
cF (wt, `t, st)

)
> u′

(
cW (wt, `t, st)

)
since consumption is

always lower if households buy land. Therefore, the impact of a reduction in Zt is to always reduce the

probability that agents will become a farmer.

Notice that the magnitude of the impact of Zt on µ (wt, `t, st). On the one hand, more productive

farmers are more severely affected by the shock, since they have larger st. On the other hand, the

magnitude of the difference between u′
(
cF (wt, `t, st)

)
− u′

(
cW (wt, `t, st)

)
is larger for less productive

farms, because of the curvature of the utility function.

32Controlling for the predicted probability decreases the correlation between shocks, but the change in point-
estimates are, in practice, small.
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OD.2 Price shock and the probability of becoming a farmer.

We now turn to the impact of a small shock to land prices on the probability of becoming a farmer

∂µt
∂pt

=
1

κ
µt (1− µt)

[u′ (cFt )− u′ (cWt )] `t︸ ︷︷ ︸
income effect (+)

− u′
(
cF
)
`∗t︸ ︷︷ ︸

purchasing power effect (-)

 ≶ 0.

Now, we have two different mechanism. First, we have an income effect, which comes the fact that

agents become richer when they own more land. This mechanism moves in the same direction of prices

and its influence is larger when farmers are poorer, since the difference between in marginal utility of

consumption u′
(
cF
)
−u′

(
cW
)

is larger. Notice that agents with no land are not influenced by the income

effect.

Second, we have a purchasing power effect, which moves in the opposite direction of prices. When

prices drop, agents are more likely to stay, since they can purchase more land. Notice that, for agents

outside of agriculture, this is the only mechanism that influences their decision, since they own no wealth

from land.
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OE Tables and Figures

Table O.1: Effects of Weather Shocks on Farmers’ Exit and Farm Size Growth
Exit probability Log farm size

(1) (2) (3) (4)
Colombia West Africa Colombia West Africa

TempShocks 0.192∗∗∗ 0.096∗∗∗ -0.292 -0.110
(0.057) (0.013) (0.237) (0.068)

Tempshocks× LF -0.037∗∗∗ -0.027∗∗∗ 0.731∗∗∗ 0.509∗∗∗

(0.014) (0.002) (0.085) (0.016)
Observations 7,336 50,742 6,782 43,640
R2 .55 .55 .83 .74
Mean Shock Var 2.612 3.297 2.606 3.284
SD Shock Var 0.20 0.39 0.19 0.39

Notes: Estimates of equation (1) on the probability of exiting from agriculture (defined as a household reporting no landholdings) and
farmers’ log land size. LFf is an indicator variable for whether the farm is above the average farm in its respective country. Mean
Shock Var., and SD Shock Var. show the average and standard deviation in the number of days (measured in hundreds) with atypical
temperature in each sample. Standard errors clustered at the geographic administrative level in which the weather shock is measured
in parentheses. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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Table O.2: Descriptive Statistics

Mean Std. Dev. Min Max
(1) (2) (3) (4)

Panel A: Municipality (N= 864)

SNR
Number of Total Land Sales 12.62 24.75 0 292
Number of Full Land Sales 10.83 21.63 0 281
Number of Partial Land Sales 1.79 6.05 0 133
Number of Mortages 2.62 7.54 0 172

Land Registry
Number of owners 2,501.13 2,160.43 21 18,768
Mean of farm size 32.06 106.71 1 1,693
Median of farm size 16.15 86.73 0 1,438

Controls
Number of total allocations 444.68 679.23 1 6,550
=1 if land registry update 0.07 0.25 0 1
Registered area (1000 ha.) 41,255.76 87,792.98 340 1,475,761
Accumulated precipitation 3,516.60 2,647.67 372 21,144
Days of atypical high temperature 120.47 75.50 5 483
Days of atypical low temperature 154.92 72.23 1 401
Days of atypical temperature 275.39 43.56 157 485

Panel B: ELCA - Household (N= 4,293)

=1 if HH has land 0.88 0.33 0 1
=1 if farm size ≤ 3 ha 0.75 0.43 0 1
=1 if HH migrated 0.12 0.33 0 1
=1 if HH sold animals 0.69 0.46 0 1
Asset index 0.00 0.39 -1 3
Farm size (ha.) 2.52 5.53 0 118
Consumption per capita 2.66 2.10 0 54
Accumulated precipitation 3,746.58 2,580.70 720 22,934
Days of atypical high temperature 267.29 119.26 64 528
Days of atypical low temperature 49.76 43.33 0 176
Days of atypical temperature 317.04 85.59 178 529

Notes: Summary statistics for each estimation sample. Panel A describes the variables used for municipality-level estimations. Total
number of sales includes full sales and partial sales during the year. Full sales correspond to sales where the entire property is transferred
to another owner. Partial sales correspond to sales that transfer only a fraction of the initial property to a new owner. Number of
total allocations corresponds to the cumulative sum of government-allocated farms in the municipality from 1901 until the year of
observation. Panel B summarizes data used for estimations at the household-year level. This data comes from 3 rounds (2010, 2013
and 2016) of ELCA, a panel of rural households collected by Universidad de los Andes. Climate data used to compute the number of
days with shocks and the accumulated precipitation comes from the Copernicus Climate Change Service (C3S). Days with atypical
temperature shows the aggregate number of days across the two prior years (t−2, t−1) with either abnormally high or low temperatures.
Accumulated precipitation is the volume of rain in milliliters for year t.
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Table O.3: Effect of Temperature Shock on Land sales: matching vs. non-matching buyers

Full sample
Above median land share

from govt. allocations

(1) (2) (3) (4) (5) (6)

Total Sales
Sales to

Landless Buyers
Sales to

Already Owners Total Sales
Sales to

Landless Buyers
Sales to

Already Owners

Panel A: Fuzzy Matching - Bigram

TempShocki,t 2.537*** 1.866*** 0.671*** 3.524*** 2.679*** 0.845***
(0.536) (0.408) (0.192) (0.855) (0.654) (0.300)

Observations 10,021 10,021 10,021 5,097 5,097 5,097
R2 0.905 0.889 0.838 0.899 0.877 0.839
Mean Dep. Var 12.62 9.37 3.25 20.91 15.47 5.44

Panel B: Fuzzy Matching - Jaro Winkler

TempShocki,t 2.537*** 1.402*** 1.135*** 3.524*** 2.080*** 1.445***
(0.536) (0.325) (0.291) (0.855) (0.526) (0.466)

Observations 10,021 10,021 10,021 5,097 5,097 5,097
R2 0.905 0.857 0.889 0.899 0.845 0.885
Mean Dep. Var 12.62 6.10 6.52 20.91 10.04 10.87

Panel C: Exact Matching

TempShocki,t 2.537*** 1.780*** 0.757*** 3.524*** 2.546*** 0.978***
(0.536) (0.412) (0.190) (0.855) (0.663) (0.297)

Observations 10,021 10,021 10,021 5,097 5,097 5,097
R2 0.905 0.889 0.837 0.899 0.877 0.839
Mean Dep. Var 12.62 9.62 3.00 20.91 15.90 5.01

Notes: Data from the National Superintendency of Notaries (SNR) records. Coeficient estimates from equation (4). The main
independent variable is the total number of atypical temperature days in the past two years (t− 1, t− 2) divided by 100. Controls are
accumulated allocations, area covered by the land registry, an indicator of registry updates, accumulated precipitation and five lags.
See texts for more details. Standard errors clustered at the municipality level reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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Table O.4: Temperature Shocks and Land Sales - Alternative Definitions of Shocks

Total Full Partial Mortg.
(1) (2) (3) (4)

Panel A: Threshold 5, 95
TempShocks 4.290*** 3.150*** 1.140*** 1.922***

(0.867) (0.804) (0.370) (0.368)
Observations 10,021 10,021 10,021 10,021
R2 0.906 0.902 0.636 0.757
Mean Dep. Var 12.62 10.83 1.79 2.62
Panel B: Threshold 1.5SD
TempShocks 3.689*** 2.765*** 0.925*** 1.762***

(0.752) (0.695) (0.317) (0.314)
Observations 10,021 10,021 10,021 10,021
R2 0.906 0.902 0.636 0.758
Mean Dep. Var 12.62 10.83 1.79 2.62
Panel C: Shorter time window
TempShocks 2.248*** 1.887*** 0.361 1.004***

(0.546) (0.504) (0.238) (0.231)
Observations 10,021 10,021 10,021 10,021
R2 0.905 0.902 0.635 0.757
Mean Dep. Var 12.62 10.83 1.79 2.62
Panel D: SPEI continuous
SPEI(−) 0.859** 0.441 0.418** -0.349*

(0.349) (0.324) (0.171) (0.183)
Observations 10,021 10,021 10,021 10,021
R2 0.905 0.902 0.636 0.756
Mean Dep. Var 12.62 10.83 1.79 2.62
Panel E: SPEI No discrete
Months(SPEI < −2) 0.846** 0.647** 0.199 0.389***

(0.348) (0.322) (0.160) (0.121)
Observations 10,021 10,021 10,021 10,021
R2 0.905 0.902 0.635 0.756
Mean Dep. Var 12.62 10.83 1.79 2.62

Notes: Data from the National Superintendency of Notaries (SNR) records. Coefficient estimates from
equation 4. Each panels use a different temperature shock definitions. Panels A and B compute the tem-
perature shock with the same procedure as the main specification, except they take different thresholds to
define when a day has atypically low or high temperature. In panel A, the thresholds are the 5th and 95th

percentiles of the temperature distribution, respectively. In panel B, the thresholds are the mean -/+ 1.5
standard deviation of the temperature distribution. Panel C computes the temperature shock with the same
procedure as the main specification, except the time reference for the shock thresholds is 1990-2011. Panel D
uses a variable with the negative values of the annual SPEI in years t− 1 and t− 2 multiplied by -1 and zero
otherwise. In panel E, defines a shock measure equal to one when the monthly SPEI < −2 in the years t− 1
and t − 2. All regressions include the same controls and fixed effects as the main specification. Except for
panel D that includes in addition a variable with the positive side of the annual SPEI and zero otherwhise.
Mean Dep. Var. is the mean of the dependent variable. Standard errors clustered at the municipality level
reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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Table O.5: Temperature Shocks and Average Farm Size - Alternative Definitions of Shocks

(1) (2) (3)
Number of

Owners
Mean

Farm Size
Median

Farm Size
(1) (2) (3)

Panel A: Threshold 5, 95
TempShocks 0.024*** -0.028*** -0.036**

(0.008) (0.008) (0.015)
Observations 10,021 10,021 10,021
R2 0.992 0.993 0.974
Mean Dep. Var 2,501.13 32.06 16.15
Panel B: Threshold 1.5SD
TempShocks 0.016** -0.018*** -0.027**

(0.006) (0.007) (0.014)
Observations 10,021 10,021 10,021
R2 0.992 0.993 0.974
Mean Dep. Var 2,501.13 32.06 16.15
Panel C: Shorter time window
TempShocks 0.013*** -0.013** -0.021*

(0.005) (0.005) (0.012)
Observations 10,021 10,021 10,021
R2 0.992 0.993 0.974
Mean Dep. Var 2,501.13 32.06 16.15
Panel D: SPEI continuous
SPEI(−) 0.013** -0.017** -0.042**

(0.006) (0.007) (0.019)
Observations 10,021 10,021 10,021
R2 0.992 0.993 0.975
Mean Dep. Var 2,501.13 32.06 16.15
Panel E: SPEI discrete
Months(SPEI < −2) 0.006* -0.006 -0.012

(0.003) (0.004) (0.009)
Observations 10,021 10,021 10,021
R2 0.992 0.993 0.974
Mean Dep. Var 2,501.13 32.06 16.15

Notes: Data from the National Land Registry (Catastro Nacional), mantained by the National Geographical
Institute (IGAC). Panels try different temperature shock definitions from the main specification. Panels A
and B compute the temperature shock with the same procedure as the main specification, except they take
different thresholds to define when a day has atypically low or high temperature. In panel A, the thresholds
are the 5th and 95th percentiles of the temperature distribution, respectively. In panel B, the thresholds are
the mean - 1.5 standard deviation and the mean + 1.5 standard deviation of the temperature distribution,
respectively. Panel C computes the temperature shock with the same procedure as the main specification,
except the time reference for the shock thresholds is 1990-2011. Panel D uses a variable with the negative
values of the annual SPEI in years t− 1 and t− 2 multiplied by -1 and zero otherwise. In panel E, defines a
shock measure equal to one when the monthly SPEI < −2 in the years t−1 and t−2. All regressions include
the same controls and fixed effects as the main specification. Except for panel D that includes in addition
a variable with the positive side of the annual SPEI and zero otherwhise. Mean Dep. Var. is the mean of
the untransformed variable. Standard errors clustered at the municipality level are reported in parenthesis.
∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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Table O.6: Temperature Shocks and Land Sales - Alternative Specifications

Total Full Partial Mortg.
(1) (2) (3) (4)

Panel A: Controls for departamento specific linear trends
TempShocks 2.532*** 2.018*** 0.514** 1.059***

(0.535) (0.502) (0.224) (0.241)
Observations 10,021 10,021 10,021 10,021
R2 0.905 0.902 0.636 0.757
Mean Dep. Var 12.62 10.83 1.79 2.62
Panel B: Controls for displacement
TempShocks 2.524*** 2.000*** 0.525** 1.049***

(0.537) (0.505) (0.229) (0.237)
Observations 10,014 10,014 10,014 10,014
R2 0.906 0.902 0.636 0.757
Mean Dep. Var 12.63 10.84 1.79 2.62
Panel C: Controls for homicide
TempShocks 2.457*** 1.938*** 0.519** 1.016***

(0.540) (0.509) (0.226) (0.237)
Observations 10,014 10,014 10,014 10,014
R2 0.906 0.903 0.636 0.758
Mean Dep. Var 12.63 10.84 1.79 2.62
Panel D: Municipality and departamento × year clusters
TempShocks 2.537*** 2.013*** 0.523* 1.046***

(0.786) (0.732) (0.284) (0.388)
Observations 10,021 10,021 10,021 10,021
R2 0.905 0.902 0.636 0.757
Mean Dep. Var 12.62 10.83 1.79 2.62

Notes: Data from the National Superintendency of Notaries (SNR) records. Panels present
different robustness checks to the main specification with all controls. Panel A includes the
interaction between the administrative division Departamento and a linear trend. Panel B
and C include a measure of displaced population and total number of homicides, respectively
(both as proportion of the total population in 2005 in the municipality). Panel D clusters
standard errors by municipality and by departamento-year. Mean Dep. Var. is the mean
of the dependent variable. Clustered standard errors are reported in parenthesis. ∗p<0.1,
∗∗p<0.05, ∗∗∗p<0.01.
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Table O.7: Temperature Shocks and Average Farm Size - Alternative Specifications

Number of
Owners

Mean
Farm Size

Median
Farm Size

(1) (2) (3)

Panel A: Controls for departamento specific linear trends
TempShocks 0.015*** -0.015*** -0.022*

(0.005) (0.005) (0.012)
Observations 10,021 10,021 10,021
R2 0.992 0.993 0.975
Mean Dep. Var 2,501.13 32.06 16.15
Panel B: Controls for displacement
TempShocks 0.015*** -0.015*** -0.022*

(0.005) (0.005) (0.012)
Observations 10,014 10,014 10,014
R2 0.992 0.993 0.974
Mean Dep. Var 2,501.38 32.06 16.15
Panel C: Controls for homicide
TempShocks 0.015*** -0.015*** 0.000

(0.005) (0.005) (0.002)
Observations 10,014 10,014 10,014
R2 0.992 0.993 0.926
Mean Dep. Var 2,501.38 32.06 0.98
Panel D: Municipality and departamento × year clusters
TempShocks 0.015** -0.015** 0.000

(0.006) (0.007) (0.003)
Observations 10,021 10,021 10,021
R2 0.992 0.993 0.926
Mean Dep. Var 2,501.13 32.06 0.98

Notes: Data from the National Land Registry (Catastro Nacional), maintained by the National
Geographical Institute (IGAC). Panels present different robustness checks to the main specifi-
cation with all controls. Panel A includes the interaction between the administrative division
Departamento and a linear trend. Panel B and C include a measure of displaced population
and total number of homicides, respectively (both as proportion of the total population in 2005
in the municipality). Panel D clusters standard errors by municipality and by departamento-
year. Mean Dep. Var. is the mean of the dependent variable. Clustered standard errors are
reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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Table O.8: Temperature Shocks and Household Assets

Refrigerators

Washing

Machines Blenders Ovens Microwave Heaters Showers
Air-

conditioning Televisions Radios
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

TempShocks -0.059*** 0.061*** -0.043** -0.014 -0.021*** -0.020*** -0.067*** -0.100*** -0.040** 0.003
(0.018) (0.019) (0.021) (0.009) (0.007) (0.005) (0.011) (0.010) (0.018) (0.023)

Observations 11,422 11,422 11,422 11,422 11,422 11,422 11,422 11,422 11,422 11,422
R2 0.681 0.645 0.559 0.447 0.443 0.405 0.572 0.445 0.536 0.540
Mean Dep. Var 0.64 0.24 0.71 0.04 0.03 0.02 0.06 0.05 0.84 0.54

Sound
Equipment

Video
Equipment Computers Bikes Motorcycles Automobiles Houses Office Lots

Other
Goods

TempShocks -0.041* 0.005 -0.045*** -0.015 0.041** -0.036*** -0.006 0.001 -0.006 -0.173***
(0.021) (0.020) (0.012) (0.021) (0.019) (0.009) (0.011) (0.003) (0.006) (0.013)

Observations 11,422 11,422 11,422 11,422 11,422 11,422 11,422 11,422 11,422 11,422
R2 0.586 0.537 0.528 0.602 0.685 0.706 0.529 0.456 0.430 0.495
Mean Dep. Var 0.32 0.25 0.08 0.40 0.32 0.05 0.05 0.00 0.01 0.06

Notes: Data from ELCA. Dependent variables are dummies for the options given to the household when asked: Does this household
own any of the following assets? Regressions include the same controls and fixed effects as the main ELCA specifications. Mean Dep.
Var. is the mean of the dependent variable. Standard errors clustered at the household level are reported in parenthesis. ∗p<0.1,
∗∗p<0.05, ∗∗∗p<0.01.

Table O.9: Temperature Shocks, Farm Size, and Share of Government-Allocated Area
Control: Share allocates Hi: Share allocated

Number of
Owners

Mean
Farm Size

Median
Farm Size

Number of
Owners

Mean
Farm Size

Median
Farm Size

(1) (2) (3) (4) (5) (6)
TempShocks 0.014*** -0.015*** -0.022* 0.014*** -0.016*** -0.031***

(0.005) (0.005) (0.012) (0.005) (0.005) (0.011)
TempShocks×Hi 0.000 0.004 0.027*

(0.008) (0.009) (0.015)
Observations 10,021 10,021 10,021 10,021 10,021 10,021
R2 0.992 0.993 0.975 0.992 0.993 0.975
Mean Dep. Var 2,501.13 32.06 16.15 2,501.13 32.06 16.15

Notes: Data from the National Land Registry (Catastro Nacional), maintained by the National Geographical Institute (IGAC). All
dependent variables are in logarithms. The main independent variable is the total number of atypical temperature days in the past
two years (t− 1, t− 2) divided by 100. Controls are log accumulated allocations, log registry area, an indicator for cadastral update,
and log accumulated precipitation with 5 lags. All regressions also include year and municipality fixed effects. Mean Dep. Var. is the
mean of the untransformed variable. Standard errors clustered at the municipality level are reported in parenthesis. ∗p<0.1, ∗∗p<0.05,
∗∗∗p<0.01.
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Table O.10: Temperature Shocks and Farm Size - Heterogeneous Effects by Contiguous Plots

Number of
Owners

Mean
Farm Size

Median
Farm Size

(1) (2) (3)

TempShocks 0.019*** -0.019*** -0.022
(0.006) (0.007) (0.015)

TempShocks×High -0.003 0.005 0.010
(0.006) (0.006) (0.013)

Observations 8,575 8,575 8,575
R2 0.991 0.993 0.973
Mean Dep. Var 2,532.27 30.81 15.62

Notes: Data from the National Land Registry (Catastro Nacional), mantained by the National Geographical Institute (IGAC). All
dependent variables are in logarithms. The main independent variable is the total number of atypical temperature days in the past
two years (t − 1, t − 2) divided by 100. Controls are log accumulated precipitation during and five lags, log accumulated allocations,
log area covered by the land registry and an indicator of registry updates. Regressions also include year and geographic fixed effects.
High indicates a dummy variable equal to one for municipalities with a high (above the median) share of farms in the 10th percentile
of the size distribution that are contiguous to at least one farm above the 90th. Neighbors are constructed from buffers around GPS
coordinates of farms in the data from the National Agricultural Census of 2014. Standard errors clustered at the municipality level are
reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.

Table O.11: Temperature Shocks and Number of owners, by Initial Size Quantile

Number of owners by initial distribution quantiles (qjm)

q1m q2m q3m q4m q5m q6m q7m q8m q9m q10m
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

TempShocks 0.032∗∗ 0.017∗ 0.026∗∗∗ 0.016∗ 0.022∗∗∗ 0.008 0.006 -0.001 0.001 -0.000
(0.016) (0.010) (0.008) (0.008) (0.006) (0.007) (0.006) (0.006) (0.006) (0.004)

Observations 10,004 9,967 9,942 9,893 9,996 9,958 10,017 9,981 9,996 10,017
R2 0.940 0.971 0.981 0.982 0.986 0.985 0.985 0.990 0.990 0.993

Notes: Data from the National Land Registry (Catastro Nacional), mantained by the National Geographical Institute (IGAC). De-
pendent variables are log number of owners whose farm is in the corresponding size range defined by the quantiles of the initial farm
distribution. The main independent variable is the total number of atypical temperature days in the past two years (t − 1, t − 2)
divided by 100. Controls are log accumulated allocations, log area covered by the land registry, an indicator of registry updates, log
accumulated precipitation and five lags. Regressions also include year and municipality fixed effects. Standard errors clustered at the
municipality level are reported in parenthesis. ∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01.
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Figure O.1: Effects of Weather Shocks on Probability of being a Farmer
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Figure O.2: One Century of Land Allocations - 1901–2012

Notes: Data from the System of Information for Rural Development (SIDER)
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Figure O.3: Ratio of Land Sales to Number of Allocations

Notes: Data from the National Superintendence of Notaries (SNR). The figure shows the proportion of farms sold
in each vereda to the total number of farms allocated by the government between 1980 and 2011.
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Figure O.4: Agricultural Productivity Shock with Strong Persistence

(a) Short-Term Shock (b) Long-Term Shock

(c) Short-term shock and Farm Size (d) Long-Term shock and Farm Size

Notes: Panel (a) shows the simulated short-term shock and Panel (b) shows the long-term shock. Panel (c) and
Panel (d) show the implications for the average farm size. In the short-term case, we have an increase in the number
of farmers, reducing average farm size, whereas in the long-term case we observe an increase instead, with the exit
of farmers being larger than the inflow. In both cases, the long-term implications are substantial.
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Figure O.5: Mean and Median Allocation Size - 1961–2012

Notes: Data from the System of Information for Rural Development (SIDER). National-level yearly average area
of land properties granted by the government as part of the public-land allocation program.

Figure O.6: Number of Allocations (SIDER) vs. Number of Registrations (SNR)

Notes: Data from the System of Information for Rural Development (SIDER) and from the National Superinten-
dency of Notaries (SNR). The figure compares the number of land properties allocated by the government as part
of the public-land allocation program with the number of properties registered at local public notary offices as
received by the government. Property registration constitutes the final step to finalize the allocation process and
ensures the formal property right of the beneficiary over the granted plot of land.
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Figure O.7: Temperature Shocks Across Space - 2000 and 2010

(a) Shocks in 2000

(b) Shocks in 2010

Notes: Data from the Copernicus Climate Change Service (C3S). The figure shows the average number of days
with extreme heat (red) and cold (blue) across veredas in our sample in 2000 and 2010.
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Figure O.8: Temperature Shocks Across Time

Notes: Data from the Copernicus Climate Change Service (C3S). The figure shows the average number of days
with extreme heat (red) and cold (blue) across veredas in our sample for the 1979–2016 period.

Figure O.9: Temperature Shocks and Land Transactions

Notes: Data from the National Superintendency of Notaries (SNR) records. The figure presents the coeffiecient
estimates for the number of days with atypical temperature (divided by 100) and its lags from equation (O.1).
Dependent variables are: the total number of land sales (black) and the total number of land mortages (red).
Included controls are accumulated allocations, accumulated precipitation at time t and five lags. Regressions also
include year and municipality fixed effects Standard errors clustered at the municipality level. The vertical lines
represent the 95% confidence intervals
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Figure O.10: Temperature Shocks and Farm Size

(a) Owners (b) Area

Notes: National Land Registry (Catastro Nacional), mantained by the National Geographical Institute (IGAC).
The figure presents the coeffiecient estimates of the number of days with atypical temperature at between t and
t − 7 divided by 100 from equation (O.1) using as dependent variables the total number of land owners (panel a)
and alternative measures of farm size (panel b). Included controls are log accumulated allocations, log area covered
by the land registry, an indicator of registry updates, log accumulated precipitation at time t and its seven lags.
Regressions also include year and municipality fixed effects. Standard errors clustered at the municipality level.
The vertical lines represent the 95% confidence intervals.

Figure O.11: Temperature Shocks and Number of Owners by Initial Distribution Quantiles -
Alternative Partitions

(a) Quintiles (b) Vigintiles

Notes: OLS estimates of the γ coefficients according to equation (6), for each of the 5 and 20 quantiles of the initial
municipality-level distribution of farm sizes. Each point estimate corresponds to a separate regression where the
main independent variable is the total number of atypical temperature days in the past two years (t − 1, t − 2)
divided by 100. The dependent variable is the log number of owners per quantile. Controls are log accumulated
allocations, log area covered by the land registry, an indicator of registry updates, log accumulated precipitation and
five lags. Regressions also include year and municipality fixed effects. Error bars display 95% confidence intervals
for standard errors clustered at the municipality level.
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